VB-Toolbox

A Free Oisual PASU oolbox ()

A Visual BASIC Toolbox DLL
© M Shaw - 2003-201 |

http://vbtoolbox.kerys.co.uk

Documentation and
Programmer's Guide

Version |.36

26th March 201 |

VBToolbox Documentation 26 March 2011 Page | of 158

About the Library

VB is an excellent language to work in but it i3 beking in some areas, These deficiencies can be made
Jp for by writing your awn functions such as Round(), Min() or Max() in VB to add flexibilicy.
However, for speed-critical routines this may not be idesl or quick enaugh Incerfacing wich a DLL
zains the "best of bach worlds” in terms of high-performance and convenience of use,

The lack of library include feamwres in VB means chat creating a pool of regularly used code modules
sn't as easy as with languages such as "C" and it can be 2 pain to have o "re-invent” dhe wheel o
serform commecn tasks which are not provided-for by the BASIC language icself. This library offers a

number of roucines, commenly implemenced in VB code bur which can now be called direcdy fram a
DLL without the need for longhand code.

This guide i intended to help programmers make che best use of the festures of this exeension DLL.

Development and Testing

The DLL functions can be called from any programming lamguage which supports linkage oo excernal
DLLs - not just Visual BASIC. For example, Visual FoxPrao, VB for Apps (VBA), FreeBASIT etc

The library incerfaces were tested in Microsoft Visual BASIC V5.0 and should work OK with Yisual
BASIC 6.0 and cdones such as PowerBASIC or FreeBA51C.

Although not a commercial package, YBToolbowx undergoes periodic testing and revision. Jince the
released code may contain more recent updates, please ensure that you refer to the current
“declares” defined in the accampanying BAS ar TLE module where they differ from the cantents of
this manual,

Test programs are usually included wich the distribution and other demanstration programs and
resources are available at hetpdvhroalbox kervs.couk!

Previcus Versions

All previcus versions of this DLL should be discarded fordvwith from 286 March 2011

Ttz dimdualimnll eeds frafaied wding Dpeeallflfve 2 'ﬂﬂ“&ﬂﬁﬂﬁﬂuﬂ

¥BToalbox Documentation 26 March 2011 Page I of 158

General Programmer's Notes On Using the Library

Description

VB is a great language for non-professional programmers, with both VB5 and VB6 still widely used as
a commercial development platform. Although the language has broad coverage in terms of
functionality there are a few constructs which need regular inclusion in many programming projects
such as rapid pointer-handling which can produce really quick code.

Visual BASIC has poor include library support with no automatic include-chaining as with C/C++.
There is an advantage in terms of speed, flexibility and code-reuse in using an external DLL which
provides many of the missing features which usually have to be written "longhand". This DLL library
can be used not only by VB programmers but also by any language which can safely call external DLLs
such as Visual FoxPro. PowerBASIC or FreeBASIC.

This project was originally developed for sole use by the author. However it is shared with the wider
computing community in the hope it may be of some use.

Licensing and Terms of Use

The library is offered as royalty-free freeware in the hope it may benefit anyone getting to grips with
VB for the first time. No warranty of any kind is intended, offered or issued. No liability is accepted
for losses of any kind consequential to the use of this product.

The library is expressly intended primarily for educational use by the computer hobbyist. It is not
intended for commercial use; nor may it be distributed with commercial software or included in any
software library of any kind without express permission from the author. Non-commercial
distribution is royalty-free and is permitted as long as these licence conditions are honoured. The
software may not be resold or distributed at a profit without the express permission of the author.

You may freely distribute the ANSI or Unicode DLLs with your personal software project but they
may not be distributed with any kind of commerecial software.

All functionality should be subjected to thorough testing by the programmer before using on any
project handling live data. The author accepts no responsibility whatsoever for lost data or damages
arising from the use of this software either direct or consequential. By using it you agree to the terms
and conditions and agree to indemnify the author against any and all direct or indirect legal liabilities.

Please see any enclosed README.TXT file for the latest licensing conditions and other important
information which may affect your licence to use this product.

VBToolbox Documentation 26 March 2011 Page 3 of 158

Unicode and ANSI Versions of this Library

From vI.31 this library is available as either an ANSI or part-Unicode DLL. Full Unicode support is
not yet provided and the interface to many string functions still receives ANSI-translated strings from
Visual BASIC. See the section relating to each function for more specific information.

The ANSI version consists of a DLL (MSLIB145.DLL) and a set of Declare statements (MSLIB145.BAS)
which you can selectively include in your own projects.

Unicode is a special method of handling Strings within programs which uses a |16-bit (wide) character
set instead of the traditional ANSI 8-bit (narrow) character set. This permits a much wider range of
characters to be represented, including a huge range of international characters.

The Unicode version consists of a DLL (MSLIB146.DLL) and a Type Library (TLB) file
(MSLIB146.TLB). You can also use appropriate Declare statements instead of the TLB file but care
should be taken when translating from TLB format to Declare format.

Full Unicode support is fairly limited at present and there are few functions which present a need to
handle full 16-bit or double-byte international characters.

Declares (ANSI Include File - MSLIB145.BAS)
VB5 Declare statements you will need for projects which use this DLL are included in MSLIBI45.BAS.

You will need to add this, either selectively, in part, or in-full, to your project as a VB module. Place a
copy of the file in your “include” folder and drag it into the project’s "project explorer tree”. If you
are unsure of the calling-conventions then open this file and examine the function prototypes. Please
do not change the declares for the downloaded version of the DLL or your VB program will crash or
behave unpredictably - particularly where ByRef calls are changed to ByVal. Little or no type-checking
is made by VB on variables passed to external DLLs.

Type Library (Unicode Version - MSLIB146.TLB)

To use the Type Library file, from within VB you should select Project->References, browse to the
location of the MSLIB146.TLB file and select it using the File Open dialogue. Ensure the module is
ticked in the "Available References" list once you have selected it.

Once you have successfully loaded the Type Library Visual BASIC will have the information it requires
for you to use the exported DLL functions without requiring Declare statements.

You may browse the exported function list by pressing the F2 key within Visual BASIC, selecting
"VBToolbox" from the topmost "<All Libraries>" scrollbox. Help and information about each object
is shown at the bottom of the screen.

Functions which process binary data such as EncryptString do not handle data as Unicode

One you have compiled your finished program you will no longer require the TLB file.

The type library does not offer full Unicode support. Full support is still in progress.

VBToolbox Documentation 26 March 2011 Page 4 of 158

VBToolbox and Unicode Strings

Unicode systems store characters in special strings usually defined as BSTRs. These are |6-bit wide
multi-byte chars matching a "C" short (VB Integer) data type rather than the usual legacy 8-bit "C"

char (VB Byte) data type. The use of |6-bits enables a wider range of characters to be represented
including non-English symbols.

Visual BASIC uses Unicode strings internally throughout, although conversion is usually automatic
with no intervention being needed. Most DLLs and standard "C" functions use ANSI strings which are
roughly equivalent to legacy ASCII strings composed of 8-bit characters.

The BSTR data type can hold both Unicode (multibyte) or ANSI strings. They have data structure
with header which records the memory allocation. Standard "C" strings do not; these are simple
arrays of type "char" terminated with a single null character. Strings are returned from VBToolbox
internally as BSTR data types even when ANSI strings are returned from a function. Visual BASIC is
able to perform the necessary conversion automatically during call and return.

VBToolbox mostly works with ANSI/ASCII strings throughout and VB handles these reliably when
returned. Where necessary you can also force conversion using the VB StrConv function.

Exanuﬂes: Debug.Print StrConv (GetUserDir (), vbUnicode)
Prints: "C : \Document s and Settings\Admin"

Debug.Print StrConv (StrToHex ("Hello",5),vbUnicode)
Prints: "4 8 6 56 C 6 C 6 F "

VBToolbox Documentation 26 March 2011 Page 5 of 158

Caution - UPX Compression

The DLL will usually supplied UPX-compressed but extreme care should be exercised if re-
compressing it.

More importantly, if you intend to use the LogEvent() Windows NT/XP+ Event-Logging features
you should, never repackage the DLL as this will corrupt the event-string resource. Consequently

you will not be able to uncompress them properly after compression.

Compressing could cause corruption of your event-log contents when read by the Event-Viewer. If
you accidentally compress it then use the command:

UPX -d mslib145.dll

- to fully-decompress it again.

Caution - Thread Safety

This library should not be considered thread-safe and no guarantees of thread-safety are offered.
Apparently many aspects of VB5 and 6 and some aspects of SAFEARRAY code are not entirely
thread-safe either and the presence of some static variables within "C" functions means the code is
not safely re-entrant. Thread-critical code should either call known thread-safe API functions or

specific thread-safe code should be written with appropriate locks etc. If in doubt, test thoroughly.

If in doubt, test thoroughly before using with critical code.

Caution - DLLs Are Case Specific!
The links to a DLL interface are case-specific. You must use the correct spelling and case when

calling DLL functions via Declare statements or the interface will either not work or may work
unpredictably. Pay particular attention to the correct function return types.

Caution - This is a 32-bit Library

This is a 32-bit only library. There is no demand for a Visual BASIC 3.0/16-bit version and one will not
be produced. Recommended development platforms are VB 4.0, 5.0 and 6.0 but the DLL will work
with any language which can reference DLLs such as FreeBASIC or PowerBASIC.

The library should not be assumed to be compatible with Visual BASIC versions prior to version 5.0

The library should be assumed to be incompatible with 64-bit systems.

The library may be compatible with 32-bit Windows emulators such as WINE and possibly ReactOS
but it has not yet been tested on those platforms.

VBToolbox Documentation 26 March 2011 Page 6 of 158

Caution - Function Parameters - Use Function Return Values
Avoid using the "Call" syntax on external Functions which return values

Despite the Visual BASIC 5 documentation You should ensure you use the function body return for
external code declared using Declare Function, rather than relying on a function parameter unless
this documentation for that function recommends otherwise. The VB documentation states:

"If you use either Call syntax to call any intrinsic or user-defined function, the function's
return value is discarded."

However, testing has shown there to be a bug in VB5 where failing to use return parameters or using
a Declared function as a Sub will cause VB to become unstable and crash on exit or memory regions
for variables to be overwritten. This is not a bug in VBToolbox and would apply to any external or
API function which returns a value and is called using the "Call" syntax. Debugging such problems
would be extremely difficult. The most likely cause of problems is that VB suffers from a buffer-
overflow condition. This may not show as a memory-leak but in random instability and unexpected
changes in the values of variables.

The following conditions are required for this to happen:

* You are calling a declared external Function rather than a Sub

* You are using Declares rather than a Type Library (TLB)

e You are not retrieving a return parameter OR are not enclosing the function parameter in
parentheses OR you are using Call with an external function which returns a value.

e Type library (TLB) versions are not affected as far as can be ascertained

» External routines declared as Sub are not affected, only Functions

e This is not an issue of BSTR v's LPSTR declares (ByVal) declares

e This is not an issue of BSTR* v's LPSTR* (ByRef) declares

» This is not due to problems within the code inside the external DLL - the problem occurs on
empty or "(null)" DLL function wrappers

Unless stated in the documentation (e.g. EncryptString), a Function call should be enclosed in
parentheses and the return value used, particularly the case of functions handling and returning strings
such as StripL(). Functions within this library generally cannot be used as commands (Subs) as with
those provided by VB. For example. Wherever practical function parameters have been declared
internally within the DLL as "constant” values and are therefore not changed. Usually a copy of the
parameter is returned which is allocated by the Windows API which allows VB to destroy and
"garbage-collect” the memory.

Trim x ' Permitted by VB with intrinsic VB function but has no effect on variable "x"
StripL x ' Not permitted by this library -The VB syntax-checker should block this
Call StripL(x) ' Not permitted by this library - Function return is not properly used/deallocated

y=Trim(x) ' Permitted by VB intrinsic function
y=StripL(x) ' Mandatory for all VBToolbox functions (not Subs)
x=StripL(x) ' Where you wish to change and then update the value of x

Care should be particularly exercised where fixed-length strings are supplied to functions since an
entirely new string will be returned by the function body and the original string usually left unchanged.

VBToolbox Documentation 26 March 2011 Page 7 of 158

Caution - Function Parameters - Use Function Return Values (Continued...)

It's worth noting that Visual BASIC doesn't alter the value of parameters within string functions. As an
example here is how the Trim() function modifies parameters and returns in VB5.

Example:

Dim a As String
Dim b As String

" Hello "
Trim(a)

a =
b =

Debug.Print "a=[";
Debug.Print "b=[";
' Hello] '

a = [
' b = [Hello]
a =" Hello "
Trim a

Debug.Print "a=[";

' a=[Hello]
Example Unstable Code

Declare Function

Foo x '
Call Foo (x) '
y=Foo (x) '

Example Unstable Code:

Dim j As Long
Dim Max As Long

a; "

b; ""
Function parameter unchanged
' Function return changed

a; "1

' Function parameter unchanged

Foo Lib "libname" (ByVal Value as String)

Crash
Crash
Safe

as

String

"oy

Max = 100000 ' This code will crash due to VB5 bug & not using funct-return
For j = 1 To Max
If j Mod Max / 10 = 0 Then
Writeln j
Debug.Print PrintR(Join(QSort (StrSplit(_
"six, three, one, twelve,6,", ","))))
Else
Call QSort(StrSplit("1l,two,3,hello,5,yello,zero",
End If
Next

VBToolbox Documentation

26 March 201 |

Page 8 of 158

Caution - Visual BASIC and Unsigned Long Values

The Long data-type used in Visual BASIC is a signed type with a range of -2,147,483,648 to
2,147,483,647. Although it offers equivalent long data types "C" also offers an unsigned long type
which has a range 0 to 4,294,967,295.

There may frequently be a need to convert hex values outside the signed range into a VB long data
type. Hence you may observe large numeric values specified as negative numbers where the leftmost
or most-significant-bit (sign bit) is set. Two different hexadecimal values will have also the same
signed absolute (abs()) decimal value for a given number. For example:

Const HKEY LOCAL USER As Long = -2147483647# ' Hex value is: &H80000001

' &h: 8 0 - 0 1

' Bit: 8421 8421 - 8421 8421

' Val: 1000 0000 - 0000 0001
Debug.Print hex (-2147483647) ' Prints 80000001 (signed input)
Debug.Print hextolong("80000001") ' Prints 2147483649 (unsigned)
Debug.Print longtohex (-2147483649) ' TFFFFFFF (interpreted as signed)

http://www.google.com/search?g=convert+-2147483649+to+hex (prints -0x80000001)
http://www.google.com/search?g=convert+0x7FFFFFFF+to+decimal (prints 2 147 483 647)

Where there has been a need to accommodate passing unsigned long values into "C" routines a VB
Double data type has been used in preference. If there is confusion it may help to deal with hex
equivalents for large signed or unsigned numbers wherever possible. As shown above, Google can be
used to convert between data types when debugging code.

Caution - VB and "C" (DLL) Integers

If you are developing code where the byte-level of data-encoding is important then you need to bear
the following in mind.

The "C" data-type int is machine-dependent and it's byte-length is therefore not specified or
guaranteed. An int. in 2 Win32 "C" compiler such as MSVC is 8 bytes long (the same as a long) but
the VB Integer data-type is only 4 bytes long. If you are developing "C" or "C++" code you must
ensure you use either a short or unsigned short data type which is guaranteed to be 4 bytes long.

VB was designed to handle signed values for each given integer type, functions which require the
handling of unsigned values, such as hex conversion routines, are declared to pass the next-highest

data type in order to ensure flagging the leftmost "sign" bit does not corrupt values.

Remember: Visual BASIC Integer = "C"/C++ short

VBToolbox Documentation 26 March 2011 Page 9 of 158

Caution - String Parameters - Use ByRef in Declares Only Where Specified

You must usually call DLLs using strings using ByVal and not ByRef unless the DLL has specially
been written to accept ByRef calls. The correct declarations are given in mslib145.bas. VB supplies a
“pointer to string” when you pass ByVal. If you pass ByRef then you will be passing a pointer to a
pointer (char**). Which is usually NOT what you want.

Strings which return "full binary" characters (0..255) outside the normal printable-range may, in some
cases need, to be trimmed using the supplied Visual BASIC VBStr() routine. Check each function

definition for more information.

A brief summary of ByRef v's ByVal as translated to the "C" interface by VB is as follows:

VB Type ByVal ByRef
Byte char char*
Integer short short*
Long long long*
Double double double*
String char* char**

A call ByRef is used in a few cases with VBToolbox where a value other than String is changed and
returned. e.g. StringToBMP, BMPInfo, BGRSplit etc.

Example VBIC-DLL functions compared:
You should see what happens in any called "C" module when you confuse ByVal and ByRef. Get it
wrong and indirection will fail. Your app will get a pointer to a value when it expects a value or vice-

versa. Any subsequent dereferencing of a pointer or addressing a value may cause a GPF.

VB | Public Declare Sub FooConstlint Lib "some.dll" (ByVal i as Integer)

"C" |void _stdcall FooConstlnt(short i); /I'L may not be changed (copy)

VB | Public Declare Sub FooChangelnt Lib "some.dIl" (ByRef i as Integer)

"C" |void _stdcall FooChangelnt(short* i); /I L may be changed (pointer)

VB | Public Declare Sub FooByVal Lib "some.dIl" (ByVal s as String)

"C" |void _stdcall FooByVal(char* s); /I Pointer to C string

VB | Public Declare Sub FooByRef Lib "some.dIl" (ByRef s as String)

"C" |void _stdcall FooByRef(char** s); /I Pointer to an array of C string pointers

Notice also that the VB Integer data type is a "short int" in "C" and not "integer".

VBToolbox Documentation 26 March 2011 Page 10 of 158

DLL Functions Which Return String Values

Although NULL-terminated strings are no longer returned by VBToolbox this section is retained for
reference.

“C” does not have a native “string” data type as such. Strings in “C” are simply arrays of characters.
No record is ever kept of the length of a string by the “C” compiler. Instead the convention is that all
such “strings” are terminated with a NULL (0, or "\0") character, as in ...

“The cat sat on the mat0”

The absence of this terminator is a frequent reason why many C and C++ programs crash
catastrophically after losing track of strings and accessing areas of memory which the program does
not “own”.

VB handles strings in a different way, keeping an exact record of how long the strings are and, thus,
doesn’t need the terminating NULL character. Consequently if C/C++ strings are returned from a
DLL to VB and exact string lengths aren't calculated then the null character needs to be stripped off
to avoid a longer string than expected being processed by VB. A functions is provided for this
conversion process where necessary in Visual BASIC - VBStr() and it's alias StripTerminator().

These two functions are defined in the mslib145.bas module which also includes the required DLL
interface definitions and must therefore included with all of your VB projects.

Most functions from V1.1 | onward will no longer require the use of StripNulls() or VBStr() etc. to
trim terminating NULL characters. Most functions have been rewritten for exact-memory-allocation
where Visual BASIC is allowed to take care of string-deletion and “garbage-collection”

See the section on Visual BASIC Wrapper Functions and the notes given for each function for more
information.

Possibly Unnecessary Function Exports

Some may consider many of the Windows API functions unnecessary to include as they may be just as
easily be utilised via a direct declare to the relevant Windows DLL.

The reason such functions are included is so they may be exported via the Type Library (TLB) file
without the necessity of declare statements at all. They are made available via declares merely for the
sake of completeness.

Additionally where DLL wrappers are places around external API calls which could otherwise be

called directly without the VBToolbox DLL they may include additional error or parameter checking
which can make your code more stable (checking for null pointers, invalid or empty strings etc.).

VBToolbox Documentation 26 March 2011 Page || of 158

Duplicate Name Conflicts When Calling DLLs

If the given names conflict with those of another function or DLL an “Alias” can be declared.
You can rename a DLL and call it within VB using any name you like.

For example, if you want to use a function exported from the VBToolbox DLL called "EncryptFile64"
using the function name “Encrypté4” then simply change or add an "Alias" declaration as follows
(fictitious example):

Private Declare Function Encrypt64 Lib "mslibl45.dl11" Alias
"EncryptFile64" (ByVal FileName As String, ByVal Buffer As String) As
String

Correct DLL Function Calling Conventions and Visual BASIC IDE Issues

It is vital that you adhere to proper calling conventions when calling external DLLs. During testing it
was found to be possible to create unstable local variables in one location within VB if an incorrect
function call was made earlier on in program code.

For example, the following illegal function call (command or VB "Sub"-style) method of calling an
external function will not be properly checked. was made during testing ...

StripL Temp, " h"

This resulted in no problems and should have been syntax trapped by the IDE. However, later on
during testing an integer was declared and it was found that the value of this integer was changing
randomly within the program code and this was also traced later to be happening with each and every
call to Debug.Print. It was clear from this that the IDE and the VB variable allocation table had been
corrupted, possibly by the string return from StripL() not being handled or released correctly.

The correct syntax to use when calling external functions should be to either use "Call" or make a
proper function call which assigns the return value to a variable ...

Call StripL (Temp," h")
stringvar=StripL (Temp," h")

If this form is used the IDE will properly check for syntax errors.
An example of this bug is shown below...

Code:

StripL Temp, " h"
Dim X as Integer
X=10

Debug.Print X
Debug.Print X
Debug.Print X
Debug.Print X

VB Immediate Pane Output Result:

Notice that X varies randomly between each call, almost certainly due to memory-corruption ...

33
0

-1
-1
-1

See cautions relating to the use of function returns

VBToolbox Documentation 26 March 2011 Page 12 of 158

Visual BASIC, Windows XP and Data Execution Prevention (DEP) Issues

Being released prior to Windows XP, the Visual BASIC 5 IDE appears to require a DEP exception to
be configured. DEP (Data Execution Prevention) was a new feature provided with XP Service Pack 2
which is designed to prevent code being executed from areas of memory flagged as "NX" (no
execute). By default DEP is enabled only for essential Windows applications and services.

If you enable DEP for all programs then you will need to include Visual BASIC 5 in the exceptions list
or you may experience the following error. Note that this error is due to the VB IDE and NOT due
to VBToolbox.

Data Execution Prevention - Microsoft Windows

To help protect your computer, Windows has closed this program.

" Mame: ¥isual Basic
==

m, Publisher: Microsoft Corporation

R —y

l Zhange Settings [? lglu_:usg Message

Diata Execution Prevention helps protect against damage From viruses or okher
threats, Some programs might nok run correckly when it is burned on, For
an updated version of this program, contact the publisher, what else should T do®

You can replicate the problem in XP as follows.

I) Enable DEP for all programs by going to Start-> Settings-> Control Panel-> System->
Advanced Tab-> Performance (Settings)-> Data Execution Prevention Tab.
2) Then select "Turn on DEP f or all programs and services except those | select". (Ensure Visual
BASIC is not in the exceptions list to test this problem).
3) Launch the Visual BASIC IDE and crate a new, EXE project. It should open with one form (Form|)
4) Enter or edit the Form| code as follows...

Private Sub Form Load()
Debug.Print "Running..." 'Breakpoint set here if rqgd.
Call x

End Sub

Private Sub x()
'Does nothing
End Sub

5) If you wish, you can set a breakpoint at the Debug.Print "Running..." line (it will never be executed)
6) Save the project in a new folder, called, say, "empty-project”
7) Click run. You should get a DEP crash.

® You can also replicate the problem by entering only the name of a non-existent sub or
function (which should be trapped by the IDE when run). This also causes a DEP crash.

® These are all VB/XPSP2 interaction issues and not related to VBToolbox.

® Compiled EXE programs still work fine, including those created with VBToolbox

DEP Problem Workaround

Either re-enabled the default XP DEP setting (only essential Windows programs and services) or
configure Visual BASIC as an exception to DEP. You can use the prompt offered by the crash-handler.
Note that after changing DEP settings you must exit and re-load any open VB5 IDE projects.

VBToolbox Documentation 26 March 2011 Page 13 of 158

Console Functionality

Unlike VB6, VB5 doesn't natively produce console applications which can attach to and write to any
currently open console (CMD) window. This functionality is provided here by allowing your VB
executable process to open it's own console window.

Your program will not write to any currently open console window when first compiled. This is not a
bug it is by design due to the limitations of the VB5/6 compiler. The EXE may be re-linked with
LINK.EXE as a full-console binary (see the Console section of this manual). Bear in mind it's the EXE
which needs to be re-linked despite functionality being provided by the VBToolbox DLL.

Server CGI Applications

Despite not writing to any currently open CMD.EXE console window the console functionality works
absolutely fine with Server CGI scripting allowing you to develop back-end CGl applications using
Visual BASIC 5, 6 or any similar language. Console processes are spawned at the server end to
provide input and output to stdout and stdin and destroyed when the program terminates. You
should, however always use CloseConsole to forcibly close any console window you have opened.
Functionality has been tested using Apache/Win32.

A small Win32 CGl test program and VB project/source-code are available on the VBToolbox site.

Specific HTTP and CGl functionality is planned for implementation at a later date.

Intended Language and OIS Platforms

This project was intended for use with legacy Visual BASIC 4.0, 5.0 and 6.0. You should also be able
to use the libraries successfully from MSOffice, VBA, Visual FoxPro, FreeBASIC etc. or any other
language which accepts declares and interfaces for 32-bit Windows DLLs. Generally it should be
assumed that this library will work satisfactorily with Windows XP or Vista only. Feedback from
testing on other OfS versions including WINE is always appreciated.

This version will have been tested and should work satisfactorily with the following versions of
Windows:

Windows NT Workstation 4.0 (SP6a)
Windows 2000 (SP3+)

Windows XP (SP2+)

Windows 7

Other DLL Libraries You Can Use

You can use any installed DLL if you know the correct interface method and are able to build up
“legal” declares for it. You can use the entire “C” function library from MSVCRT*.DLL (if installed)
and a list of exported functions for this library is included at the end of this manual

Why do you call it “BASIC” instead of “Basic’?

BASIC is an acronym, or letter-abbreviation for Beginner's All-Purpose Symbolic Instruction Code,
whereas Pascal, Fortran, C++, Pilot, Java etc. are not.

Bug Reporting
Please report any bugs via the website giving full details of the problems and, if possible a sample of
the code involved. As this is a freeware product there is NO WARRANTY and | can’t guarantee Ill

be able to reply directly. Well-documented bug-reports are taken seriously and | will endeavour to
rectify any “bugs” or address any requests for new features in the next release.

VBToolbox Documentation 26 March 2011 Page 14 of 158

Website: http://vbtoolbox.kerys.co.uk
VBTooolbox Installation

Installation Procedure

e Copy the supplied DLL to your Windows system directory. This will be something like ...

C:\WINNT\SYSTEM32
C:\WINDOWS\SYSTEM32

For NT, Windows 2000 or XP

or for legacy Windows 9x systems ...

C:\WINDOWS\SYSTEM
C:\WIN95\SYSTEM
C:\WIN98\SYSTEM

Alternatively you can leave the DLL in the application directory if you only want to do testing or place
it in any folder which is in your current PATH variable.

* You may rename the DLL if you wish. Avoid multiple copies of the DLL on your system

* For the ANSI version, copy the MSLIBI45.BAS module to convenient a folder such as
\VB\INCLUDE - Drag and drop the file onto your project list for the project you want to include
the library for

e For the Unicode/TLB version, ensure you browse to the location of MSLIBI46.TLB and include it
as a project reference

e That’s it!. The functions are now available.

Installation Troubleshooting

* Note that console /O may only work in properly in Windows NT, XP and W7 - it is untested in
Win9x which is now obsolete and has a declining user-base. Windows 3.x is not supported.

* If you have problems then check you have downloaded the latest copies of both the BAS or TLB
module and the matching DLL.

¢ Check that you have them both TLB/BAS module and DLL module installed as a matched pair as
future updates may change the interface specifications.

* If you can’t rename or delete the DLL to install a new version, exit VB or any application which
uses the DLL as these will “lock” the DLL. If you still can’t delete or rename then reboot the PC

and ensure that no application which uses the DLL is loaded at startup.

e Ensure that you only have one copy of the DLL in the currently pathed directories, particularly if
you have different versions of the DLL installed.

Visual BASIC - Application Setup Wizard - Install/Setup - Troubleshooting
There is a bug in the Visual BASIC 5 setup program which can cause setup to fail under certain
circumstances. If you run SETUP.EXE from a location where the path contains non-alphanumeric
characters then the legacy Windows 3.x code which appears to form the basis of the setup program
gets confused and will refuse to install your completed project. You will receive the error:

"Invalid command-line parameters. Unable to continue"

and setup will exit. If this occurs check that it has not been launched from a location which contains
underscore (_) or hyphen (-) characters in any part of the directory/folder/path name. If you still have

VBToolbox Documentation 26 March 2011 Page 15 of 158

problems copy the setup disk set image (Disk|, Disk2 etc...) to a root folder such as c:\setup and try
again from there. You may find it will work perfectly.

VBToolbox Documentation 26 March 2011 Page 16 of 158

Function Interface List

The functions are grouped together in the manual according to several categories. This taxonomy is
by no means definitive or concrete. Some data-conversion functions might be viewed as maths
functions for example. If in doubt, refer to the index at the rear of this manual.

DLL Management Functions

Function - LibDate

Declare: Private Declare Function LibDate Lib "mslib145.dll" () As String
Purpose: Used to check if the correct release-date version of the DLL is loaded or installed.
Returns: Returns a string in ISO date format as "YYYYMMDD"

Function - LibName

Declare: Private Declare Function LibName Lib "mslib145.dll" () As String
Purpose: Used to check the compiled filename of the DLL which has been loaded
Returns: Returns a string matching a filename: e.g. "MSLIB145.DLL". No path value will be

returned and this is the compiled filename which could, potentially be renamed. Use
GetDLLFileName to retrieve the actual loaded filename and path location.

See also: GetDLLFileName

Function - LibTime

Declare: Private Declare Function LibTime Lib "mslib145.dll" () As String
Purpose: Used to check if the correct release-time version of the DLL is loaded or installed.
Returns: Returns a string in 24-hour time format as "HH:MM:SS" indicating the time the DLL

was compiled.

VBToolbox Documentation 26 March 2011 Page 17 of 158

Function - LibVersion

Declare:

Purpose:

Returns:

Notes:

Example:

Suggested use:

Private Declare Function LibVersion Lib "mslib145.dIl" () As Long

Used to check if the DLL is loaded or installed. Can be called safely with the
following routine which is included in the MSLIB145.BAS file.

Returns an integer with the version multiplied x 100 (e.g. v1.03 = 103)

This function was originally exported as “_libversion” (case specific)
Divide the return by 100 to get the version number

Checks if the DLL functions are installed and available so you can decide whether or
not to use them in your program. If the DLL is not installed then IsDLLInstalled
records the error event as a “False” value.

Private Function IsDLLInstalled() As Boolean
Dim r As Long
IsDLLInstalled = True

On Error GoTo NoDll
r = LibVersion/()

On Error GoTo 0
Exit Function

NoD11:
'This is triggered if the DLL is not available or the function
'has not been exported (i.e. Wrong DLL version)
IsDLLInstalled = False
Resume Next
End Function

Public DLLInstalled as Boolean

Sub Main ()
DLLInstalled=IsDLLInstalled()
End Sub

You can also use the global version string within your program to check for compatible versions of
this DLL using DLLVersion(). This returns a string in the format “xx.x” e.g. “1.02”

Public Function DLLVersion () As String
Dim VerNum As Integer
Dim Temp As String
On Local Error Resume Next
Temp = "0.00"
VerNum = LibVersion ()
Temp = Format (VerNum)
Temp = Left$(Temp, 1) & "." & Right$(Temp, 2)
DLLVersion = Temp
End Function

Function - LibUnicode

Declare:

Purpose:

Returns:

Private Declare Function LibUnicode Lib "mslib145.dll" () As Boolean

Used to check if the loaded DLL is the ANSI or Unicode version. This does not
indicate full Unicode support is available in any given version. The ANSI version
does not support a Type Library (TLB) and requires Declare statements. The
Unicode version is supported with a TLB file but may also use Declare statements.

Returns a Boolean True or False value

VBToolbox Documentation 26 March 2011 Page 18 of 158

String Handling Functions

The string-handling collection includes a number of routines which can simplify the amount of
external calculations and pointer mathematics involved. These involve simple ways to split and join
strings. For example, splitting functions include CSVSplit, StrSplit, Tokenise, BracketStr MidCharStr,
MidStrStr and joining functions include Join (as per VB6), InsertString

When handling returns from String() array or Variant() String array functions it will often be desirable
to check whether the String or Variant array is empty before calling other code such as UBound or
LBound etc. In such cases the returned value should be tested using the VB IsArray() function rather
than ISEmpty() or IsSet(). This is because a valid variant is always returned to enable function
returns to be chained.

Function - AddString

Declare:

Purpose:

Notes:

Notes:

See Also:

Public Declare Function AddString Lib "mslib145.dIlI" (ByRef a As String, _
ByVal b As String) As String

Functional replacement for the concatenation operator "&" which uses the Win32
System API to allocate memory rather than restricted VB string space.

This function is only suitable for non-binary ASCII (ANSI) "text" strings which have
no embedded NULL characters (0x00). Use AddBinaryString for strings which may
contain embedded NULL characters.

Strings which are returned are "garbage collected" by VB

Parameter "a" is freed on successful concatenation and set to NULL
Maximum transient memory allocation is (2 x a) + b

Currently no error return indicates an out-of-memory condition. You can use

GetError() to check this
If the 2nd parameter is NULL a new string containing the |st parameter is returned

AddBinaryString, AddHugeBinaryString, AllocString, GetError

VBToolbox Documentation 26 March 2011 Page 19 of 158

Function - AddBinaryString

Declare:

Purpose:

Notes:

See Also:

Public Declare Function AddBinaryString Lib "mslib145.dIl" (ByRef a As String, _
ByVal b As String, Optional ByVal Length As Long = 0) As String

Functional replacement for the concatenation operator "&" which uses the Win32
System API to allocate memory rather than restricted VB string space.

This function is suitable for binary or ANSI strings which may have embedded NULL
characters (0x00). Consequently, for binary strings, the length of the string to
append must be specified using the "Length" parameter.

Unless the 2nd parameter has been allocated by APl memory allocation
AddBinaryString requires that the precise length of the 2nd parameter be given. This
is particularly the case where string literals are concerned. The caller is responsible
for the accuracy of the length value. No checks are made.

If parameter "length" is zero then the entire 2nd parameter string will be copied
Strings which are returned are "garbage collected" by VB

Parameter "a" is freed on successful concatenation and set to NULL

Maximum transient memory allocation is (2 x a) + b

Currently no error return indicates an out-of-memory condition. You can use
GetError() to check this

There is a practical memory limit of about 200 mb on the total size of input strings

dependent on available system memory (See AddHugeBinaryString)

If the 2nd parameter is NULL a new string containing the |st parameter is returned

AddString, AddHugeBinaryString, AllocString, GetError

VBToolbox Documentation 26 March 2011 Page 20 of 158

Function - AddHugeBinaryString

Declare:

Purpose:

Notes:

See Also:

Public Declare Function AddHugeBinaryString Lib "mslib[45.dII" (_
ByRef a As String, ByVal b As String, Optional ByVal Length As Long =0, _
Optional ErrCode As Integer = 0) As String

Functional replacement for the concatenation operator "&" which uses the Win32
System API to allocate memory rather than restricted VB string space.

This function is suitable for very large binary or ANSI strings of up to say 300
megabytes or more which may have embedded NULL characters (0x00).
Consequently the length of the string to append must be specified using the
"Length" parameter.

IMPORTANT — As this function attempts to concatenate both input strings
in-memory then both input strings are released (deleted) from memory and the
allocation pointers set to NULL. Any resulting string which has been successfully
concatenated is returned by the function return. In order to achieve this both input
strings are passed by reference and not by value.

Return memory is allocated using the SysAllocString() APl and will be managed by
VB. SysFreeString() should not be called with a null or invalid pointer.

If the strings are over 100 megabytes in size then the function will try to use an
intermediate temporary file on the hard drive to concatenate the strings. If the disk
is full this function will fail and return NULL for all string inputs and returns.

If parameter "length" is zero then the entire 2nd parameter string will be copied
This function is NOT exported via the TLB Unicode interface

Since there are many potentials sources of failure when concatenating even a single

character to a huge string an optional error return parameter is provided which will
return the following error codes -

No error

File not found

Can't open file

Can't allocate memory

Insufficient disk space

o U1 AW | DN | O

Failed to create a free temporary filename

Codes may change in future versions

AddString, AddBinaryString, AllocString

VBToolbox Documentation 26 March 2011 Page 21 of 158

Function - AllocString

Declare:

Purpose:

See also:

Public Declare Function AllocString Lib "mslib145.dIl" (ByVal | As Long, _
Optional ByVal BlankChar As Byte = 0) As String

Allows extremely rapid allocation of strings using direct Windows API calls. Has
the same functionality as String$ but under some circumstances this may be faster.

FillString, AddString, AddBinaryString, AddHugeBinaryString

Function - ArgFound

Declare:

Purpose:

Example:

Result:

See also:

Public Declare Function ArgFound Lib "mslib145.dIl" (ByRef v As Variant,
ByVal s As String, Optional ByVal IgnoreCase As Boolean = True)
As Boolean

Tests a string array stored as a Variant to see if an argument LValue is present for
a pair of values. Each of the values in the array will be in the form "x=y" pair. e.g.
"Value=ten".

The function does not test to see if an RValue exists, just for the presence of the
Lvalue. For the pair "Value=ten" the presence of the string "Value=" is checked.

The search is case-significant by default but can be ignored by setting IgnoreCase

For the 3-item array below stored in Variant V from using Tokenise() or GetArgs()
"A=1"
np=om"
ne=3"

Debug.Print "Argument B Found?="; ArgFound(V,"B")

"Argument B Found?=True"

GetArgs, GetCGIlArgs, ArgVal, Tokenise

Function - BracketStr

Declare:

Purpose:

Notes:

See also:

Public Declare Function BracketStr Lib "mslib145.dll" (ByVal s As String, _
ByVal p As Long, _
Optional ByVal StripBrackets As Boolean = False) As String

Tests for a matched bracket pair within a given string or string expression and
returns the bracketed substring if and only if the bracket pairs match.

The bracket-type is automatically detected and matched.

The following bracket-types are automatically-recognised: () [] {} <>

The input character position location is a base | value

On error or bracket not matched NULL is returned otherwise the bracketed
substring is returned. The bracketed expression is returned complete with enclosing
brackets unless the optional StripBrackets flag is set to True

Use FindClosingBracket to retrieve only the location of the closing bracket

FindClosingBracket

VBToolbox Documentation 26 March 2011 Page 22 of 158

Function - ArgVal

Declare:

Purpose:

Notes:

Important:

Example:

See also:

Public Declare Function ArgVal Lib "mslib145.dIl" (ByRef v As
Variant, ByVal s As String,Optional ByVal IgnoreCase As
Boolean = True) As String

Tests an array to see if an argument LValue is present for a pair of values.

If the LValue is found then the RValue (if any) is returned. The function may return
NULL (") if the RValue is absent. Each of the values in the array will be in the form
"x=y". e.g. "Value=ten".

The search is case-significant by default but can be ignored by setting IgnoreCase

You should call ArgVal before calling URLDecode on any CGI query string.

The reason for this is that the ampersand character (&) is used to delimit the query
string and is therefore used to "tokenise" or split the string into an array. When
the ampersand is used in text the character is encoded as %26 by the browser or
web server. You should call URLDecode only after the array has been split
otherwise the character will be wrongly interpreted as a delimiter character.

For the 3-item array below stored in Variant V using Tokenise() or GetArgs()

"A=1"
np=om"
noc=3"

Debug.Print "Argument Value for B ="; ArgVal(V,"B")
Prints out: "Argument Value for B =2"

GetArgs, GetCGIlArgs, ArgFound, StrSplit, Tokenise

VBToolbox Documentation 26 March 2011 Page 23 of 158

Function - CommaStr

Declare: Public Declare Function CommaStr "mslib[45.dIl" (ByVal S As String, ByVal
DecimalPrecision as Integer) As String

Purpose: Takes a string and formats it with commas at every three digits. Trailing values after
the decimal-point are simply truncated at whatever value is specified for
DecimalPrecision. No rounding is performed. No checks are made to see if the string
contains valid numeric values. Use Comma() to safely format numeric values.

Example: CommaStr (“12345678.901234”,2) returns “12,345,678.90”

See also: Comma

Function - Comma

Declare: Public Declare Function Comma "mslib[45.dll" (ByVal Value as Double, ByVal
Optional Decimals as Integer=2) As String

Purpose: Takes a number and returns a formatted string separated by commas. Trailing
values after the decimal-point are simply truncated at whatever value is specified
No rounding is performed and no checks are made to see if the string contains valid
numeric values. Use CommaStr() to format string values. However, under tests it
seems that VB (5 at least) automatically converts numeric values to strings.

Example: Comma (12345678.901234, 2) returns “12,345,678.90"
Comma (“12345678.901234",2) also returns “12,345,678.90”
See also: CommaStr

VBToolbox Documentation 26 March 2011 Page 24 of 158

Function - CSVSplit

Declare: Public Declare Function CSVSplit Lib "mslib145.dIl" (ByVal s As String, _
Optional ByVal ArrayBase As Long = 0, _
Optional ByVal SeparatorCharVal As Byte = 44) As Variant

Purpose: Parses and splits a line of industry-standard Comma Separated Value (CSV) items
These are items delimited by comma characters (Chr$(44)) and optionally with each
field delimited by double quote characters (Chr$(34)).

Notes: A zero-based array is returned by default. You may change this with the ArrayBase
parameter. You may change the delimiter character by supplying the ASCIl number
of a replacement.
Whitespace outside quoted fields is stripped but not within data-fields
Double-quote characters are stripped-off fields. Where excess double-quote
characters exist within a field only the outermost pair are stripped. Thus, quotes
which form part of a data field are left intact. e.g.

""This string contains quotes"","This doesn't" will transform to the array:

[0] => "This string contains quotes"
[1] => This doesn't

The function will do it's best to handle misformed fields such as ...,"a"b,... and
mismatched double-quotes.

The function times at about 8.3 microseconds per call for a 10 element string array
but timings depend how much work has to be done on complex formatting.

Example:
' Input CSV String "s" is: "one,2,"Three","four"a,b,c"
' Note that PrintR encloses displayed strings in quotes
PrintR(CSVSplit (s,Asc(","))
Result:
ByVal: VT _0x2008: Array of Variant->String(6)
(
[0] => "one"
[1] => 2"
[2] => "Three"
[3] => "four"a"
[4] => "Db"
[5] => "c"
)
See also: PrintR, StrSplit, StrToken

VBToolbox Documentation 26 March 2011 Page 25 of 158

Function - ElementCount

Declare: Public Declare Function ElementCount Lib "mslib145.dIl" (
ByRef v As Variant) As Long

Purpose: Returns a count of the number of elements (if any) in a Variant array

Notes: UBound will fail with an error on on empty Variants or empty Variant arrays —
which isn't particularly useful behaviour if you want to use UBound intelligently.
ElementCount safely returns 0 for all types of empty variant and the count of
elements for non-empty Variant arrays.

Example:
Dim V as Variant
For i=1 To 10 ' Dynamically-redimension and add items
ReDim V (ElementCount (V) +1)
V(i)=1
Debug.Print "v("; 1i; ")="; v (i)
Next
See also: GetArrayDimensions, IsArray (VB)

VBToolbox Documentation 26 March 2011 Page 26 of 158

Function - Expression

Declare: Public Declare Function Expression Lib "mslib145.dIl" (ByVal s As String, _
Optional ByRef ErrorCode As Integer = 0) As Double

Purpose: Evaluates a complex mathematical expression held in a String, returning the result
as a Double. Expression is expected to be a useful debugging tool or for use as a
handy calculator function.

Notes: An error return value is provided, this should be used to detect problems with the
expression and safely handle any required actions.

There is no operator precedence (BEDMAS or BOMDAS). The expression is
evaluated from left to right. Precedence must be enforced using standard curved
brackets "()"

All values are computed internally as Doubles wherever possible. Where integer
values must be used such as with bitwise operators numbers are first coerced to
signed 32-bit Long data types. Be aware that this may cause truncation and loss of
precision. Hex values are always evaluated initially as unsigned.

Due to the function being based on "C" libraries there may be a slight difference in
precision between Expression and the VB Immediate pane evaluation of the same

expression, particularly with very large numbers using "scientific precision".

Boolean values return | or 0 internally. An internal Boolean return may be
interpreted by Visual BASIC as either 0 (False) or -1 (True)

Comparison operators such as ">" or >=" return a Boolean 0 or | internally
Hexadecimal values are permitted using either the VB "&h" prefix or "C"-style "0x"
prefix — e.g. &h100 or 0x100. Be aware that since hex values are intended to be
mainly used for masking and bit-shifting rather than arithmetic they are held as
unsigned values.

Binary values are specified using an &b prefix, e.g. &1 || (decimal 7)

Roman numeral values are specified using an &r prefix, e.g. &rVIl (decimal 7)

All non-decimal formats are converted to decimal format before evaluation

The "pow()" (power) operator is an infix operator. i.e. it applies it's I-value to the
current accumulator and it's r-value to the next value to be met. It cannot be used

in prefix/function style — e.g. pow(x,y). It must be used as x pow y There is also a
limit of 264 to the exponent part of the power operator.

VBToolbox Documentation 26 March 2011 Page 27 of 158

Operators: The following operators and keywords are understood by Expression

Symbol |Keyword |Description
+ Addition (plus)
- Subtraction (minus)
- Negation
* Multiplication
/ Division
% mod Modulus — (Remainder after integer division — x
mod y where y>0)
A xor Bitwise xor
~ not Bitwise not
& and Bitwise and
| or Bitwise or
<< shl Bitwise shift left
>> shr Bitwise shift right
> gt Boolean greater-than
< It Boolean less-than
<= le Boolean less-than or equal-to
>= ge Boolean greater-than or equal-to
== eq Boolean equivalence
1= ne != Boolean not equal to
pow X pow Yy — Infix operator — raise x to the power
of y (max y value is 246)
Errors: Expression returns error codes as follows to indicate problems during evaluation

One one of the following cases an error return is set and the 0.0 is returned via the
main function body.

Syntax Error (The expression was badly-formed)

Division by Zero

Multiple Operators Met

Unexpected Bracket (Brackets did not match properly)

Number is Too Large to Evaluate

Invalid Expression (The expression was not valid)

Out of Heap Memory

Overflow (Resulting number was too large to hold)

V| 0| N || AW

Hex Digit Overflow

IS

power (pow) Range Error

Roman number too large

o

Binary number too large

Unknown Error

VBToolbox Documentation 26 March 201 |

Page 28 of 158

Exan1pkn Debug.Print Expression (" (((((14310+564)/6846)"2042)+5366)/7944)+9522

Debug.Print (((((14310+564)/6846) xor 2042)+5366)/7944)+9522

Result: 9522.9322759315 ' VBToolbox Expression() function
9522.9322759315 ' VB Immediate pane

See also: BracketStr, FindClosingBracket, MatchBrackets

VBToolbox Documentation 26 March 2011 Page 29 of 158

Function - FillString

Declare:

Purpose:

Example:

Notes:

See also:

Public Declare Function FillString Lib "mslib145.dIlI" (ByVal s As String, ByVal
CharToUse As String) As String

Fills a string with a given character very rapidly. Useful on extremely large strings.
A quick way of erasing of blanking a string.

FillString("1234","Hello!") returns the string “HHHH”
FillString ("The quick brown fox","*") returns Wx*Hxkdxkdxkdxkhxhixs

To simplify the interface a string is accepted for the character to use but only the
first character is used, the remainder (if any) are ignored.

AllocString

Function - FindClosingBracket

Declare:

Purpose:

Notes:

See also:

Public Declare Function FindClosingBracket Lib "mslib145.dIl" (_
ByVal s As String, ByVal p As Long) As Long

Matches a bracket pair, including nested brackets and return the character-position
of the closing bracket.

The bracket-type is automatically detected and matched.

The following bracket-types are automatically-recognised: () [] {} <>

The input character position location is an array base | value

On error or bracket not matched zero is returned. Otherwise a base | value
indicating the location of the closing bracket within the entire string is returned.
Use BracketStr to retrieve the bracketed expression or substring

BracketStr

VBToolbox Documentation 26 March 2011 Page 30 of 158

Function Filter

Declare: Public Declare Function Filter Lib "mslib145.dIl" (ByRef V As Variant, _
ByVal FilterString As String, _
Optional ByVal Include As Boolean = True, _
Optional ByVal CompareMethod As Integer = 0) As Variant

Purpose: An emulation of the Visual BASIC 6 Filter() function

Filter takes a String array or a Variant array of Strings and returns a new array based
on the criteria specified. Using the Include parameter you may choose to either
include or exclude elements based on the FilterString parameter. You may also
perform either a case-sensitive or case-insensitive search.

Filter takes a Variant argument, String() arrays will be cast by VB as Variants. This
enables input to be chained from other VBToolbox functions. A Variant String array

is returned which may be chained into other VBToolbox functions such as PrintR

Parameter CompareMethod is either vbCompareBinary or vboCompareText

Exanuﬂe: ' Exclude the word "the" from the results
Debug.Print PrintR(Filter (Tokenise ("the quick brown fox jumps over _
the lazy dog","™ "),"the", false,vbTextCompare))

Result:

ByVal:Array Variant->String (7)
(
[0] => "quick"
[1] => "brown"
[2] => "fox"
[3] => "jumps"
[4] => "over"
[5] => "lazy"
[6] => "dog"
)
See also: PrintR, StrSplit, Tokenise

VBToolbox Documentation 26 March 2011 Page 31 of 158

Sub - GetArgs

Declare:

Purpose:

Example:

Result:

See also:

Public Declare Function GetArgs Lib "mslib145.dIl" (ByVal s As String,
v As Variant) As Integer

Converts Command$ (when used as the parameter) or any other string into an
array of individual arguments akin to the argv[] values present in "C". The function
Tokenise() is used to split the string into an array.

Returns the number of elements in a string-array which is returned by means of a
Variant (v) in the function body. Note that the array will always be "base ", that is,
the first element will be at

Command$="one two three"
Dim Argc as Integer
Dim i as Integer
Dim Argv as variant
Argc=GetArgs (Command$, Argv)
For i=1 to Argc
Debug.Print "Argv["; 1 ; "] is "; Argv (i)
Next

one
two
three

Tokenise, ArgFound, ArgVal

Function - Ge

Declare:

Purpose:

Notes:

See also:

VBToolbox Docu

tArrayCount

Public Declare Function GetArrayCount Lib "mslib145.dIl" (_
ByRef V As Variant) As Long

Retrieves the number of elements in a String() array or Variant() String array,
held either ByRef or ByVal. Note that this may include NULL, Empty or "non-
allocated" elements.

You may use the PrintR() function to manually-inspect the contents of an array
and determine whether elements are empty or not

GetArrayCount accepts a Variant parameter and may be chained to the result of
other String array functions.

GetArrayDimensions, ElementCount

mentation 26 March 2011 Page 32 of 158

Function - GetArrayDimensions

Declare: Public Declare Function GetArrayDimensions Lib "mslib145.dIl" (ByRef
V As Variant) As Long

Purpose: Retrieves the dimensions of a Variant array, held either ByRef or ByVal

Example: Dim U as Variant
Dim VvV (10,2) as Variant
Dim W(4) as Variant

Debug.Print "The dimensions of U are "; GetArrayDimensions (U)
Debug.Print "The dimensions of V are "; GetArrayDimensions (V)
Debug.Print "The dimensions of W are "; GetArrayDimensions (W)
Result:
The dimensions of U are 0
The dimensions of V are 2
The dimensions of W are 1
Notes: A string-array has a dimension of |, an uninitialised Variant or one where no
array-dimensions have been specified has a dimension of 0
See also: GetArrayCount

Function - GetFileExt
Declare: Public Declare Function GetFileExt Lib "mslib145.dll" (ByVal s As String) As String
Purpose: Returns the filename-extension (filetype) part of a path string as "name[.typ]"

The dot is included in the returned string
If a path backslash character appears after the filetype then an empty string is

returned.
Exanuﬂe: Debug.Print GetFileExt ("c:\windows\system32\calc.exe")
Result: " exe"
See also: GetFileName, GetNormalisedPath

Function - GetFileName
Declare: Public Declare Function GetFileName Lib "mslib145" (ByVal s As String) As String
Purpose: Returns the filename part of a path string as "name[.typ]"

The filename need not have a filetype. If no filetype is found then the last path
segment will be assumed to be the filename.

Exarn;ﬂe: Debug.Print GetFileName ("c:\windows\system32\calc.exe")
Result: "calc.exe"
See also: GetFileExt, GetNormalisedPath

VBToolbox Documentation 26 March 2011 Page 33 of 158

Function -

Declare:

Purpose:

InChrRev

Public Declare Function InChrRev Lib "mslib145.dII" (ByVal sMyString As
String, ByVal iChar As Integer) As Long

Finds the position of a character (passed as an integer) in a string searching from the
end of the string in reverse direction.

Function -

Declare:

Purpose:

InChr

Public Declare Function InChr Lib "mslib145.dll" (ByVal sMyString As String,
ByVal iChar As Integer) As Long

Finds the first instance of a character (passed as an integer) in a string searching
forwards as with InStr()

Function -

Declare:

Purpose:

Notes:

InsertString

Public Declare Function InsertString Lib "mslib145.dll" (ByVal s As String, _
ByVal NewString As String, _
Optional ByVal InsertPos As Long = I) As String

Inserts one string into another at any position up to the end of the first string

The insertion-point is specified as a "base |" value, i.e. the first character is |, the
2nd is 2 etc. It is not permitted to insert at a position any higher than | character
after the end of the string (the string length). Inserting after the end of the string
effectively concatenates the two strings together.

Orriginal string and string-to-insert are not changed by this process. The changed
string is returned via the function-body.

Function -

Declare:

Purpose:

InStril

Public Declare Function InStrl Lib "mslib145.dll" (ByVal s As String, ByVal
search As String) As Long

Equivalent to the built-in VB function "Instr" except that a starting position may not
be specified and it is case-insignificant.

Function -

Declare:

Purpose:

InStrRev

Public Declare Function InStrRev Lib "mslib145.dIl" (ByVal sMyString As String,
ByVal Search As String) As Long

Finds the LAST instance of a string within another. Searches from the end of the
string backwards to the start of the string.

VBToolbox Documentation 26 March 2011 Page 34 of 158

Function - IsAlIChar

Declare:

Purpose:

Examples:

Notes:

See also:

Public Declare Function IsAllChar Lib "mslib[45.dIl" (ByVal s As String, ByVal
TheChar As String) As Boolean

Rapidly find if a string comprises of a single character. A quick way of finding out if a
string is all blank (spaces) etc.

IsAllChar("",””) returns True
(the given string is all “” - same as IsNull)
IsAllChar ("","”x") returns False
IsAllChar ("x”,"”"” returns False
IsAllChar ("Hello”,”H”) returns False
IsAllChar ("HHHH”,H”) returns True
IsAllChar ("HHHH”,Hello”) returns True

In order to simplify calling the function, a string is accepted as the 2nd parameter
rather than a char (Byte). However only the |st character of the string is used - the
remainder is ignored. A null string (‘”’) always matches a null char(string) and
returns True. Otherwise, if either parameter is empty (“”) then False is returned

FillString

Function - IsValidVariant

Declare:

Purpose:

Public Declare Function IsValidVariant Lib "mslib145.dIl" (ByRef v As Variant)
As Boolean

Makes rudimentary checks on a Variant to ensure it is valid and is not corrupted.
Accepts a Variant pointer (ByRef), checks the pointer is non-null and that invalid
VT_* field bit-values are not set. These checks are not conclusive.

VBToolbox Documentation 26 March 2011 Page 35 of 158

Function - Join

Declare:

Purpose:

Notes:

Example:

or:

Result:

Continued...

Public Declare Function Join Lib "mslib145" (ByRef V As Variant, _
Optional ByVal Separator As String = vbNullString, _
Optional ByVal RemoveEmptyltems As Boolean = False) As String

An emulation of the VB6 Join() function for use with VB5 and other compatible-
languages. Join takes an array of strings in either String Array, Variant or explicit
Variant array format and concatenates them into a single string optionally including a
separator string. Unlike VBé this version permits empty strings to be ignored and
separator characters for empty strings to be therefore omitted.

Although declared as taking type Variant() the VB will pass both String and Variant
String array types correctly to this function, as well as ambiguous Variant types.

If the Separator value is omitted then strings will be separated by a space.
If the Separator value is passed as an empty string; ""; then strings will not be
separated and will be contiguous in the resulting string

A non-empty Separator value will be inserted in between each string

Normally where empty strings are encountered their presence is revealed by
superfluous separator characters. (See example below) You can suppress this
behaviour by setting the optional "RemoveEmptyltems" value to True. This will
cause only non-empty strings to be returned wrapped in the given separators. This
parameter is an enhancement over the VB6 function may otherwise be ignored and
left unset.

This function does not presently have a limit value as with the VB6 equivalent.

You may alias or omit the declaration for this function when used in VB6 since Join
is a native function in this case.

The output from other VBToolbox functions which return a String array held in a
non-array Variant may be passed into Join

Join makes formatting CSV and similar data easy and is similar to the PHP function
called "implode"

Option Base 0

Dim a(3) as String ' Example using explicit String array
a(0)="Zero"

a(l)="One"

a(2):""

a(3)="Three"

Dim s As String

s=Join(a,",") ' Don't remove blank/empty strings
Debug.Print "s=[";s;"]"

Option Base 0

Dim a(3) as Variant ' Example using explicit Variant String array
a(0)="Zero" ' Assign String data

a(l)="0One"

a(2)y="" ' Create an empty array item

a(3)="Three"

Dim s As String

s=Join(a,",") ' Don't remove blank/empty strings

Debug.Print "s=[";s;"]"

Zero,One, , Three

VBToolbox Documentation 26 March 2011 Page 36 of 158

Function - Join (Continued)

Example:
Dim v as Variant ' Ambiguous non-array Variant declaration
v=StrSplit ("The-quick-brown-fox","-") ' Returns a Variant ()
s=Join(v," ")
Debug.Print "s=[";s;"]"
Result:
The quick brown fox
Example:
' Example using automatic intermediate Variant
' StrSplit() breaks-up via a full match on the string mask
' Split and remove empty strings
Debug.Print Join (Tokenise ("$1$2$3a$$$58s", "$"), ",", True)
Result:
1,2,3a,5
Example:
' Example using automatic intermediate Variant
' Tokenise () breaks-up via *any* character token in the mask
' Tokenise and remove empty strings
Debug.Print Join(Tokenise ("$1$2$3a$$$55$", "$a2"), ",", True)
Result:
1,3,5
Example:
' Create a CRLF-formatted text list from ListFiles () output
Debug.Print Join(ListFiles ("c:\MyFiles\", "*.txt"), vbCrLf)
Result:
A.txt
Basic.txt
Reminder.txt
Visual Basic.txt
See also: Filter, PrintR, StrSplit, Tokenise

Sub - Lower
Declare: Public Declare Sub Lower Lib "mslib145.dIl" (ByVal S As String)

Purpose: Converts a string to lower-case. The parameter string is changed

Function - LowerStr
Declare: Public Declare Function LowerStr Lib "mslib145.dIl" (ByVal S As String) As String
Purpose: Converts a string to lower-case. The parameter string is unaffected
You MUST use the return parameter. This function may NOT be called as if it were
a subroutine. To convert a String in-situ use Sub Lower()

This routine is intended to be a high-speed replacement for LCase$

Notes: UpperStr uses the "C" case-conversion routines for both ANSI and Unicode.
Visual BASIC "Quirks" or "Stooges" are not intentionally reproduced.

See also: Upper, UpperStr

VBToolbox Documentation 26 March 2011 Page 37 of 158

Sub - MatchBrackets

Declare: Public Declare Function MatchBrackets Lib "mslib145.dllI" (ByVal s As String, _
ByVal LH As String, _
ByVal RH As String) As Long

Purpose: Matches any pair of bracket characters (or other matchable characters) indicating a
mismatch where one exists between pairings.

Notes: Any pair of characters may be used.
Only the first character of any string is used. WhiteSpace counts as a character
The function is intended for use testing complex expressions such as RTF or
mathematical-expressions for validity.

The function returns the following values:

0 String is empty or the pair of characters are evenly matched
>0 Number of excess LH brackets
<0 Number of excess RH brackets
Example:
Debug.Print MatchBrackets ("{{}{}{{{}}{}{{}LLLI","{", ")
Result:
5 ' Five excess { brackets
See also: BracketStr
Sub - MidCharStr
Declare: Public Declare Function MidCharStr Lib "mslib145.dll" (ByVal s As String,
ByVal Ch As String, _
Optional ByVal ReverseSearch As Boolean = False) As String
Purpose: Searches a string and splits it as with Mid$ except the split is made where a
given character matches rather than by absolute position. Using MidCharStr can
save a lot of external arithmetic.
You may search either forwards from the start of the string or backwards from the
end of the string. The default is to search from the start of the string.
Only the first character of the "searched-for" string is used.
The function is case-significant
The original string is not changed
Example: Debug.Print MidCharStr ("The quick fox quickly jumps","q")
Result: "quick brown fox quickly jumps"
Example: Debug.Print MidCharStr ("The quick fox quickly jumps","qg",True)
Result: "quickly jumps"
See also: MidStrStr

VBToolbox Documentation 26 March 2011 Page 38 of 158

Sub - MidStrStr

Declare:

Purpose:

Example:

Result:

Example:
Result:

See also:

Public Declare Function MidStrStr Lib "mslib145.dll" (ByVal s As String,
ByVal ch As String, _
Optional ByVal ReverseSearch As Boolean = False) As String
Searches a string and splits it as with Mid$ except the split is made where a
given substring matches rather than by absolute position. Using MidStrStr can save
a lot of external arithmetic.

You may search either forwards from the start of the string or backwards from the
end of the string. The default is to search from the start of the string.

The function is case-significant
The original string is not changed
Debug.Print MidStrStr ("The quick fox quickly jumps","quick")

"quick brown fox quickly jumps"

Debug.Print MidStrStr ("The quick fox quickly jumps", "quick", True)
"quickly jumps"

MidCharStr

VBToolbox Documentation 26 March 2011 Page 39 of 158

Function - PrintR

Declare:

Purpose:

Notes:

Example:

Result:

See also:

Public Declare Function PrintR Lib "mslib145.dII" (ByRef V As Variant, _
Optional ByVal ShowEmpty As Boolean = False) As Long

An emulation of the PHP print_r() function. This prints out a variable in human-
readable format. The function is provided as an aid to debugging VBToolbox
programs. Output will be sent to an open console window.

Currently only one-dimensional String(), String Variant, Variant(), numeric arrays
and non-array numeric variables are handled. A Variant input is accepted which
means other functions which return a Variant type may be chained together with
the result output to PrintR

PrintR returns the count of displayed elements where an array is shown, otherwise
the number of bytes in the given variable is returned.

Debug.Print PrintR(StrSplit("1,2,3,4", ","))

ByVal:Array Variant->String (4)
(

[0] => "in

1] => nomn

[2] => "3n

[3] => "g4n

Filter, StrSplit, Tokenise

VBToolbox Documentation 26 March 2011 Page 40 of 158

Function - QSort

Declare:

Purpose:

Notes:

Example:

Returns:

See also:

Public Declare Function QSort Lib "mslib145.dIl" (ByRef V As Variant, _
Optional ByVal ReverseSort As Boolean = False, _
Optional ByVal IgnoreCase As Boolean = False) As Variant

An implementation of the "C" QuickSort applying to Visual BASIC String() arrays
or to Variant() arrays of Strings. The quicksort is an efficient means of sorting large
arrays of data.

This implementation is flexible and may sort in both forward and reverse direction
as well as being able to perform a case-insensitive or case-sensitive sort based on
"C" case-comparison rules.

The function accepts a Variant type input which permits the output from other
functions such as StrSplit or Tokenise to provide input. A Variant String array is
returned, the output of which may be chained into other functions which accept a
Variant as input such as PrintR

Both input and output from QSort may be "piped-lined" or "queued" from other
VBToolbox Variant functions such as Join, StrSplit, Tokenise, PrintR etc.

Debug.Print PrintR(Join (QSort (StrSplit("1,two, 3, four,5,six, 7", ","))))

ByVal: VT 0x0008: Variant->String BSTR => "1 3 5 7 four six two"

Filter, PrintR, QSortStr, QSortVal, StrSplit, Tokenise

Function - QSortStr

Declare:

Purpose:

Notes:

See also:

Public Declare Function QSortStr Lib "mslib145.dIl" (ByRef s() As String, _
Optional ByVal ReverseSort As Boolean = False, _
Optional ByVal IgnoreCase As Boolean = False, _
Optional ByVal Reserved As Boolean = False) As Boolean

An implementation of the "C" QuickSort applying to Visual BASIC String() arrays
only. The quicksort is an efficient means of sorting large arrays of data. QSortStr

avoids "casting" the variable to/from a Variant type.

Due to Automation-interface limitations QSortStr is not available in the TLB export
version only the ANSI/Declare version. Use QSort() with the TLB version.

This implementation is flexible and may sort in both forward and reverse direction
as well as being able to perform a case-insensitive or case-sensitive sort based on
"C" case-comparison rules.

Use QSort instead to sort Variant() arrays of strings as well as String() arrays

The "Reserved" parameter should not be changed from it's default setting

To sort numeric values use QSortVal

Filter, PrintR, QSort, QSortVal, StrSplit, Tokenise

VBToolbox Documentation 26 March 2011 Page 41 of 158

Function - QSortVal

Declare:

Purpose:

Notes:

VBToolbox Documentation

Public Declare Function QSortVal Lib "mslib145.dIl" (ByRef v As Variant, _
Optional ByVal ReverseSort As Boolean = False) As Variant

An implementation of the "C" QuickSort applying to Visual BASIC numeric arrays
only. The quicksort is an efficient means of sorting large arrays of data.

QSortVal currently supports only homogeneous arrays of either Integer, Long or
Double. You cannot mix data-types within an Variant array you wish to sort. A
Variant array must be of a consistent type. The same function will sort any of the
distinct types of data either declared directly or passed in a Variant array.

This implementation is flexible and may sort in both forward and reverse direction.

It is not possible to sort diverse Variant data-types within the same array properly
or logically. A Visual BASIC Variant array will let you store any type of data within
the same array (mixed or heterogeneous data types). For example, VB will let you
store Double, String, Boolean and Integer within the same array. Whilst it may be
plausible to cast and sort between integer data types, keeping the sort routine fast
and efficient precludes translating between inconsistent types in the same array.

QSortVal will automatically detect Variant array types from the first non-empty
array element and will check that the rest of the array is consistent with that type.

Where mixed Variant array elements are encountered (other than NULL and
EMPTY) an Empty, non-arrayed Variant will be returned. You can test this return
using the VB IsArray() function.

A new, sorted Variant array is returned and the parameter array is also sorted
Since the function returns a Variant you cannot directly assign the return to an
array of the original data-type unless that is a also a Variant.. You can, however, Call

the function and ignore the return value to sort the original array in-situ.

You may use this one function to sort the following array data types:

Byte (as Integer -Static)

Dim x(10) As Byte

Byte (as Integer - Dynamic)

Dim x() As Byte

Integer (Static)

Dim x(10) As Integer

Integer (Dynamic)

Dim x() As Integer

Long (Static)

Dim x(10) As Long

Long (Dynamic)

Dim x() As Long

Double (Static)

Dim x(10) As Double

Double (Dynamic)

Dim x() As Double

Date (as Double - Static)

Dim x(10) As Date

Date (as Double - Dynamic)

Dim x() As Date

Variant() (Static) (with above types)

Dim x(10) as Variant

Variant() (Dynamic) (with above types)

Dim x() As Variant

Unsupported types at present are Boolean, Single, Decimal, Currency, Object and
user-defined. These may be added in a future release.

26 March 201 |

Page 42 of 158

Function - QSortVal (Continued...)

Example:
Dim v as Variant (10) ' Sorted, Fixed Variant
Dim rv as Variant ' Return Variant
Dim i As Integer ' Loop counter
For i = LBound(v) To UBound(v)
v (i) = Round(CDbl (Random (99, 100000) / 33), 2)
Next i
rv = QSortvVal (v, False) ' Sort in normal-order
Call PrintR(rv, True) ' Show any empty elements/extra info
Result:
ByRef: VT 0x600c: Array of Variant->Variant (11)
(
[0] Double => 17.8800
[1] Double => 93.7600
[2] Double => 175.8800
[3] Double => 304.8500
[4] Double => 364.8800
[5] Double => 512.9100
[6] Double => 708.4800
[7] Double => 744.3300
[8] Double => 820.0300
[9] Double => 855.8800
[10] Double => 892.6400
)
Example:
Dim ba(5) As Byte ' Define a Byte-array
Dim i as Integer
For i1 = LBound(ba) To UBound (ba)
ba (i) = cByte(Random(0, 100))
Next
Call QsortVval (ba, False) ' Sort the original array
Result:
ByRef: VT 0x6011: Array of Variant->Byte (6)
(
[0] Byte => 0
[1] Byte => 41
[2] Byte => 85
[3] Byte => 72
[4] Byte => 38
[5] Byte => 80
)
See also: Filter, PrintR, QSort, QSortStr, StrSplit, Tokenise
VBToolbox Documentation 26 March 2011 Page 43 of 158

Function - Replace

Declare:

Purpose:

Examples:

Notes:

See also:

#ifdef VBS 'Defined in the default module

Public Declare Function Replace Lib "mslib145.dllI" (ByVal s As String, ByVal
SearchedFor As String, ByVal Replacement As String) As String

#endif

Search for and replace instances of one string by another one

(searches for needle string in haystack s)

The replacement string may be empty

It is permissible for the entire contents of the string to be replaced resulting in an
empty or null string being returned.

Replace ("quick brown fox","brown","red") ' Returns "quick red fox"
Replace ("quick brown fox","brown"," ") ' Returns "quickredfox"
Replace ("aHaealalao","a","") ' Returns "Hello"

Replace ("aaaaaaaaaa","a","") ' Empty or "NULL" string

Replace ("Hello™,"","H") ' (NULL return)

Replace ("","g","xr") ' Empty "haystack" (NULL return)
Replace ("","","x") ' No search parameters (NULL return)
Replace ("01234",0,9) ' Valid - VB casts numbers as strings

' Returns "91234" (0 is passed as "0")
Replace ("012",012,A) ' Valid - VB casts numbers as string-
'equivalents but take care since leading zeroes will be ignored except
'for 0 in the Immediate pane. This is a VB5 problem usual in the
'immediate window.
'Returns "OA" (012 is passed as "12") in the immediate window

Replace() is an intrinsic (built-in) function for Visual BASIC 6 - ensure that
#Const VB5 =True is set correctly. or commented-out as needed.

Always use valid string values even if VB will "cast" numeric values to string
equivalents. The use of non-string values may yield unexpected results.

ReplaceChar

Function - ReplaceChar

Declare:

Purpose:

Examples:

Notes:

See also:

Public Declare Function ReplaceChar Lib "mslib145.dll" (ByVal s As String, ByVal
SearchedFor As String, ByVal Replacement As String) As String

Character replacement only. Replaces each occurrence of the “SearchedFor”
character in “s” with the first character of “Replacement”. Only the first character
of “SearchedFor” and “Replacement” are used - remaining characters are ignored.

Debug.Print ReplaceChar ("Hello there","e","E")
Prints out "HEllo thErE"

For Use With VB 4.0 and VB5.0 only. Redundant in VB 6.0 and above as the
Replace() function is “built-in”. The returned string is exactly the same length as the
supplied string parameter. In order to simplify calling the function, a string is
accepted as the 2nd and 3rd parameters rather than a char (Byte). However only
the |st character of the parameter string is used - the remainder is ignored.

Replace

VBToolbox Documentation 26 March 2011 Page 44 of 158

Function - ReverseWords

Declare: Public Declare Function ReverseWords Lib "mslib145.dIl" _
(ByVal s As String) As String

Purpose: Reverses individual words in a plain ANSI (ASCII) string
Notes: Reverses only individual words. Does not reverse the entire text
The delimiter characters are:

Space, Tab, Carriage return, (0x0d) and Linefeed (0x0a)
Where CRLF pairs are met they are expected to be in the order 0x0d,0x0a

Example:

Debug.Print "The quick brown fox jumps over-the lazy dog"
Result:

ehT kciug nworb xof depmuj eht-revo yzal god
See also: StrRev

Function - SliceLeft

Declare: Public Declare Function SliceLeft Lib "mslib145.dll" (ByRef s As String, _
ByVal RemoveBytes As Long) As Boolean

Purpose: Permits the reduction of a string by removal of "N" characters from the left-hand
side of the string without necessitating intermediate variables in VB. This is a vital
issue when handling extremely large strings in VB of, say, up to several hundred
megabytes in size.

The usual means of extracting would be to use Mid$ as a function and return into
either the same or a new string variable. However, in either case this requires the
creation of DOUBLE the memory allocation, even if this is for a short-duration.

SliceLeft avoids impacting on the VB string space and achieves this by allocating
memory directly using the Windows API and using the "C" memcpy() function to
copy before deleting the original string and reallocating. For these reasons there is
no string return and the original string is re-allocated via the function body
parameter.

SliceLeft is "binary" string compatible and handles only ANSI strings

Example:
Dim s as String
s=ReadFileFromString ("c:\100mb.bin") ' 100mb file - 104857600 bytes
s=SlicelLeft (s,10) ' Slice 10 characters from the left
Debug.Print Len(s)

Result:

104857590

VBToolbox Documentation 26 March 2011 Page 45 of 158

Function - StrCSpan

Declare: Public Declare Function StrCSpan Lib "mslib145.dIl" (ByVal s As String, _
ByVal MaskString As String) As Long

Purpose: Returns a base | value indicating the location of the first character of
the set defined by "MaskString". If no character is found then 0 is returned.

Notes: This is similar in functionality to the "C" function strcspn() but StrCSpan gives
proper indication where the character-class is not found (0).

It is important to know that the return value is "base |" indexed. That is the first
character is | not 0. Results for empty parameters are as follows.

Strcspan(ll"'"") :> 0
strespan(","abc") => 0
strespan("abc”,"") => 0

strespan("abc”,"abc") => |

Example:
Debug.Print StrCSpan("Hello, World",".;:,")

Result:

VBToolbox Documentation 26 March 2011 Page 46 of 158

Function - StripLStr

Declare

Purpose

Example:

Result:

Public Declare Function StripLStr Lib "mslib145.dIl" (ByVal s As String, ByVal
Mask As String) As String

Takes a string and truncates it by removing any characters on the Left-hand side
that match the template pattern of the 2™ parameter. Since any characters in the 2™
parameter are allowed to match they can be specified in any order.

StripLStr (" Hello world"," leH")

“o world”

Function - StripL

Declare:

Purpose:

Public Declare Function StripL Lib "mslib145.dIlI" (ByVal s As String, ByVal Mask
As String) As String

Duplicates the LTrim() function in VB but will trim any character not just spaces.

Function - StripRStr

Declare

Purpose

Example:

Returns:

Public Declare Function StripRStr Lib "mslib145.dIl" (ByVal s As String, ByVal
Mask As String) As String

Takes a string and truncates it by removing any characters on the Right-hand side
that match the template pattern of the 2™ parameter. Since any characters in the 2™
parameter are allowed to match they can be specified in any order.

StripRStr (" Hello world"," dlrw")

“Hello wo”

Function - StripR

Declare:

Purpose:

Public Declare Function StripR Lib "mslib145.dll" (ByVal s As String, ByVal Mask
As String) As String

Duplicates the RTrim() function in VB but can trim any character not just spaces.

Function - StrRev

Declare:
Purpose:

See also:

Public Declare Function StrRev Lib "mslib145.dll" (ByVal S As String) As String
In-situ. Reverses a VB string

ReverseWords

VBToolbox Documentation 26 March 2011 Page 47 of 158

Function - StrSplit

Declare: Public Declare Function StrSplit Lib "mslib145.dIl" (ByVal ArgString As String, _
Optional ByVal Delimiter As String = "", _
Optional ByVal ArrayBase As Integer = 0, _

Optional ByVal IgnoreCase As Boolean = False) As Variant

Purpose: StrSplit is similar to Tokenise and the VB6 Split() function. It takes a string and
transforms it into an array by "slicing" it where matches are found on the Token
string.

Notes: StrSplit differs from Tokenise in that StrSplit slices the string only where a

full-match is made on the entire Delimiter parameter String; whereas Tokenise
matches any single character in the Delimiter String.

IF the Delimiter string is not found an array with a single-element starting at
"ArrayBase" containing the original string is returned.

You may specify the array base using the "Base" parameter. The default is 0
If you wish you can make a case-insignificant comparison of the Token by setting
"IgnoreCase" to True.

The resulting String array is returned within a non-array Variant object which may
be indexed in the usual way using UBound(), LBound() etc.

StrSplit is very similar to the PHP function "explode”

Parameters: Delimiter: Optional for ANSI Declare version. Mandatory for TLB version
A String character used to identify substring boundaries.
If omitted, the space character (" ") is assumed to be the delimiter.
If delimiter is a zero-length string, (vbNullString) a single-element array containing
the entire expression string is returned.
vbNullString or "" may be supplied as the parameter to the TLB version

ArrayBase: Optional. Determines the array base of the returned array. The default
is zero. You may change this to match the Option Base value.

IgnoreCase: Optional. Whether or not to ignore case when matching the
Delimiter string. The default value is False but you may modify the Declare
statement to change this behaviour.

Example:
Dim v as Variant
v = StrSplit("$1$253a$$$588", "s")
For i = LBound(v) To UBound (v)
Debug.Print "v("; 1i; ")=["; vt(i); "1"
Next
Result:
v(0)=I[]
v(1l)=[1]
v(2)=[2]
v(3)=[3a]
v(4)=I[]
v(5)=I[]
v(6)=[5]
v(7)=I[1]
v(8)=I[l]
See also: Join, PrintR, Tokenise, VariantToArray

VBToolbox Documentation 26 March 2011 Page 48 of 158

Function - SwapStr

Declare: Public Declare Sub SwapStr Lib "mslib145.dIl" (ByRef a As String, _
ByRef b As String)

Purpose: Swaps two VB strings by swapping the string pointers instead of swapping the
actual string-data

Notes: Under some circumstances it may be faster and more efficient to use Swap5Str. e.g.
Sorting routines and array transposition

VBToolbox Documentation 26 March 2011 Page 49 of 158

Function - Tokenise

Declare:

Purpose:

Notes:

Unicode:

Example:

Result:

See also:

Public Declare Function Tokenise Lib "mslib145.dII" (ByVal s As String, _
Optional ByVal Delimiters As String = ""
Optional ByVal ArrayBase As Integer = 0, _
Optional ByVal IgnoreCase As Boolean = False) As Variant

Single-character tokenisation. Breaks up a linear String into a two-dimensional
String-array of tokens by means of a specified String list of individual character
delimiters. This is similar to operations performed using the "C" strtok() function.
This is a common and often complex problem to implement. The string will be
divided at the point at which each (if any) of the individual character delimiters are
found within the argument string

This function is similar to the native VB6 function called "Split()" (see StrSplit)

The string array is returned in a Variant which can be checked using the standard
functions IsEmpty(), Ubound(), Lbound() etc. before processing.

One or more characters must be specified in the token-separator list. The string
will be broken-up each time one of the individual character tokens specified is
found.

The Delimiters parameter is mandatory with the TLB/Unicode version

If the Delimiters parameter is NULL or empty " then a space character is assumed
If no token-separators are found, the original string will be returned in an array
containing only one element. The base index of the array can be set using the
optional parameter "Base". The default array-base is zero.

Tokenise() is used to implement the Console function, GetArgs()

Visual BASIC is responsible for maintaining the returned Variant. No subsequent
deletion is performed by Tokenise(). Internally, Tokenise makes use of SAFEARRAY
data types which hold BSTR strings.

Join can be used to reassemble a tokenised string

Tokenise is similar to the PHP function "explode”

Note that, this function can accept and return Unicode strings and should be
"Unicode-safe". This is a requirement due to VB not performing an automatic "cast"
to ANSI on any returned object.

Dim s as String
Dim v as Variant
Dim i as Integer
s="The quick, brown fox jumped over the lazy dog"
v=Tokenise(s," ") ' Divide at each space character
If IsArray(v) Then

For i=LBound(v) to Ubound(v)

Debug.Print v (i)

Next

End If

The
quick,
brown
fox
jumped
over
the
lazy
dog

ArgFound, ArgVal, GetArgs, GetCGlArgs, Join, PrintR, StrSplit

VBToolbox Documentation 26 March 2011 Page 50 of 158

Sub - Upper
Declare: Public Declare Sub Upper Lib "mslib[45.dIl" (ByVal S As String)

Purpose: Converts a string to upper-case. The parameter string is changed

Function - UpperStr
Declare: Public Declare Function UpperStr Lib "mslib[45.dIl" (ByVal S As String) As String
Purpose: Converts a string to upper-case. The parameter string is unaffected
You MUST use the return parameter. This function may NOT be called as if it were
a subroutine. To convert a String in-situ use Sub Upper()

This routine is intended to be a high-speed replacement for UCase$

Notes: LowerStr uses the "C" case-conversion routines for both ANSI and Unicode.
Visual BASIC "Quirks" or "Stooges" are not intentionally reproduced.

See also: Lower, LowerStr

Function - WordWrap

Declare: Public Declare Function WordWrap Lib "mslib145.dll" (ByVal s As String, _
ByVal Width As Long, ByRef NewLen As Long) As String

Purpose: Wraps a string, if possible at the nearest whitespace or hyphen division.

Notes: The new length of the string is returned in the "NewLen" parameter

If the string contains over-length words or suitable break-points cannot be found
then the words will be broken at the specified boundary.
This is a simple text-wrap and it makes no attempt to implement font kerning

VBToolbox Documentation 26 March 2011 Page 51 of 158

Function - WildcardMatch

Declare: Public Declare Function WildcardMatch Lib "mslib145.dIl" (ByVal S As String,
ByVal Wildcard As String, Optional IgnoreCase
As Boolean = False) As Boolean

Purpose: Simple character-based text matching. This does NOT offer any kind of regex-like
functionality.

Notes: Characters are matched in more or less the same was as when searching for
MS-DOS filenames.

A "¥" character will stand for any group of characters.
A "?" will stand for any single character-.

The remainder will match on a literal basis. You can specify "IgnoreCase" to make a
case-insensitive comparison. The default is a case-sensitive comparison.

VBToolbox Documentation 26 March 2011 Page 52 of 158

Function - WordCount

Declare:
Purpose:

Notes:

Example:

Result:

Public Declare Function WordCount Lib "mslib[45.dIl" (ByVal s As String) As Long
Performs a word-count on a String..

Words are defined here as any alpha-numeric group of characters. Thus any other
character than A..Z, a..z or 0..9 counts as white-space. Words may be hyphenated.

Hyphenated words are counted as a single word but only where the hyphen occurs
between valid words and with no intervening space; thus "one-word" is a single
word but "one — word" counts as two words due to intervening spaces. Prefixed
and postfixed hyphens (minus characters) are not valid.

Dim s as String
s=" the -quick brown- fox jumps over the lazy-dog "
Debug.Print WordCount (s)

Function - WordList

Declare:

Purpose:

Notes:

Example:

Result:

Public Declare Function WordList Lib "mslib145.dll" (ByVal s As String, _
Optional ByVal ArrayBase As Integer = 0) As Variant

Performs an array of words from a given string as would be processed by
WordCount()

Words are defined here as any alpha-numeric group of characters. Thus any other
character than A..Z, a..z or 0..9 counts as white-space. Words may be hyphenated.

Hyphenated words are counted as a single word but only where the hyphen occurs
between valid words and with no intervening space; thus "one-word" is a single
word but "one — word" counts as two words due to intervening spaces. Prefixed
and postfixed hyphens (minus characters) are not valid.

Dim s as String
s=" the -quick brown- fox jumps over the lazy-dog "
Debug.Print PrintR(WordList (s))

ByVal: VT 0x2008: Array of Variant->String(8)
(

[0] => "the"

[1] => "quick"
[2] => "brown"
[3] => "fox"

[4] => "jumps"
[5] => "over"

[6] => "the"

[7] => "lazy-dog"

VBToolbox Documentation 26 March 2011 Page 53 of 158

Arithmetic and Number Functions

This includes various useful math, math-related and random-number generation functions

Function -

Declare:
Purpose:

See also:

Ceil
Public Declare Function Ceil Lib "mslib145" (ByVal d As Double) As Double
Exposes the "C" ceil() function. Rounds a number up to the next highest integer

Floor, Round

Function -

Declare:

Purpose:

Notes:

Example:
Result:

See also:

DecimalToRoman

Public Declare Function DecimalToRoman Lib "mslib145.dII" (_
ByVal i As Integer) As String

Converts an Indo-Arabic (decimal) value to classical Roman notation using the
letters IVXLCDM. Numbers may be converted back using RomanToDecimal.

The function can handle values ranging from 0 to 10,000
Values can be confirmed or tested using the Google Calculator
Signed negative values are accepted

The result is returned in upper-case format

Debug.Print DecimalToRoman (9999)

MMMMMMMMMCMXCIX

RomanToDecimal, RomanDigitToDecimal

Function -

Floor

Declare: Public Declare Function Floor Lib "mslib145" (ByVal d As Double) As Double
Purpose: Exposes the "C" floor() function. Rounds a number down to the next lowest integer
See also: Ceil, Round

Function - FMod

Declare:

Purpose:

See also:

Public Declare Function FMod Lib "mslib145.dlI" (ByVal d As Double, ByVal v _
As Double) As Double

Exposes the "C" fmod() function. The Visual BASIC Mod function rounds values to
Integer range before performing math which limits the range to "Integer Max" or
2,147,483,647. The "C" fmod() function operates within the Double data-type range
which permits a higher range to be evaluated..

Round

VBToolbox Documentation 26 March 2011 Page 54 of 158

Function - Ged

Declare: Public Declare Function Ged Lib "mslib145.dIl" (ByVal a As Long, ByVal b As
Long) As Long

Purpose: Calculate the Greatest Common Denominator (GCD) of 2 numbers

Example: Gcd (325,20) returns the value 5

Function - Max

Declare: Public Declare Function Max Lib "mslib145.dIl" (ByVal a As Integer, ByVal b As
Integer) As Integer

Purpose: DLL integer version of Max()

Notes: Both Max() and Min are commonly implemented with VB code but it is much faster

for repetitive calls if called from a DLL.

Function - Min

Declare: Public Declare Function Min Lib "mslib145.dII" (ByVal a As Integer, ByVal b As
Integer) As Integer

Purpose: DLL integer version of Min()

Notes: Both Max() and Min are commonly implemented with VB code but it is much faster

for repetitive calls if called from a DLL.

Function - PiStr
Declare: * Function removed - vI.22 - || September 2009 *

Notes: To be migrated to a separate PL.DLL

VBToolbox Documentation 26 March 2011 Page 55 of 158

Function - RomanToDecimal

Declare: Public Declare Function RomanToDecimal Lib "mslib145.dIl" (_
ByVal s As String) As Integer

Purpose: Converts a string holding a numeric value in classic Roman notation to an
Indo-Arabic (decimal) value. Numbers may be converted in the opposite direction
using DecimalToRoman

Notes: The function can handle values ranging from Roman "i" (1) to
"“MMMMMMMMM" (10,000).
Upper, lower or mixed-case input is acceptable
Spaces and tab characters within the string are permitted
Values can be confirmed or tested using the Google Calculator
High-level Roman "bar" characters for multiples of 1,000 are not handled

Example: Debug.Print RomanToDecimal ("MMMMMMMMMCMXCIX")
Result: 9999
Example: ' Test code
For i = 1 To 9999
If RomanToDecimal (DecimalToRoman (i)) <> i Then
Debug.Print "failed at "; i
Debug.Print "DecimalToRoman (i)="; DecimalToRoman (i)
Debug.Print "["; RomanToDecimal (DecimalToRoman (i));"]1"
End ' Halt at error
End If

Debug.Print i, DecimalToRoman (i)
Next
Debug.Print "* Pass *"

Result: "* Pass *"

See also: RomanToDecimal, RomanDigitToDecimal

Function - RomanDigitToDecimal

Declare: Public Declare Function RomanDigitToDecimal Lib "mslib145.dIl" (_
ByVal c As Byte) As Integer

Purpose: Converts a Byte value holding a Classic Roman numeric digit which is one of
"IVXLCM" to a decimal value

Notes: To call using VB String values use the Asc() function
Case is not significant during conversion

Example:
Debug.Print RomanBitToDigital (Asc("V"))

Result: 5

VBToolbox Documentation 26 March 2011 Page 56 of 158

Function - MTRandomise

Declare: Public Declare Sub MTRandomise Lib "mslib145.dIl" (Optional ByVal Seed _
As Integer)
Purpose: Implements the "mt] 9937" Mersenne Twister Programmable Random Number

Generator (PRNG). This function initialises the RNG. If not called directly with a
seed-value then the first call to any MT* function will initialise it.

See also: Mersenne Twister home page at:
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Function - MTRnd

Declare: Public Declare Function MTRnd Lib "mslib145.dIl" (ByVal Low as Long, _
ByVal High as Long) as Long

Purpose: Uses the Mersenne Twister PRNG to generate a random-Long Integer between
"Low" and "High" (inclusive)

Function - MTRndDouble

Declare: Public Declare Function MTRndDouble Lib "mslib145.dlI" (ByVal Low as Long, _
ByVal High as Long) as Long

Purpose: Uses the Mersenne Twister PRNG to generate a random-Double between "Low"
and "High" (inclusive)

Function - MTRandomStr

Declare: Public Declare Function MTRandomStr Lib "mslib145.dIl" (ByVal length As _
Long, Optional ByVal Style As Integer = RandomStringMixedCase) As
String

Purpose: Generates a sequence of random values using the Mersenne Twister random-

number generator according to the given Style parameter. The Style parameter
values are the same as for RandomStr().

See also: RandomStr

Function - Random

Declare: Public Declare Function Random Lib "mslib145.dll" (ByVal Lo As Integer, ByVal Hi
As Integer) As Integer

Purpose: Returns a random number in the range 0.65535 between the bounds of parameters
Hi and Lo, inclusive.

Notes: You can initialise the VBToolbox (CRT) random number generator by calling
Randomise()

VBToolbox Documentation 26 March 2011 Page 57 of 158

Function - Randomise

Declare:

Purpose:

Notes:

Public Declare Function Randomise Lib "mslib[45.dIl" (Optional ByVal Seed As
Integer) As Integer

Sets/resets the "C" random-number generator. The seed value is optional. If no seed
is specified then the clock time will be used to set it.

If using encryption functions derived from Random() then you need to be sure to
consistently call Randomise() with the same seed before each individual
encryption/decryption phase

Function - RandomStr

Declare:

Purpose:

Notes:

Public Declare Function RandomStr Lib "mslib145.dIl" (ByVal Length
As Long, ByVal Style As Integer) As String

Creates a string of the given length, allocating memory and filling with characters
according to the specified style. Five different styles of fill are provided:

Public Const RandomStringMixedCase = 0

Public Const RandomStringLower = 1
Public Const RandomStringUpper = 2
Public Const RandomStringNumeric = 3

Public Const RandomStringAll = 4

Public Const RandomStringBinary = 5

Public Const RandomStringHex = 6

Public Const RandomStringBinaryString = 7
Public Const RandomStringBinaryStringBiasO
Public Const RandomStringBinaryStringBiasl
Public Const RandomStringHexLower = 6

Useful for generating random filenames or random padding text for encryption.

RandomStringBinary creates a string with full binary range 0x00..0xff
RandomStringBinaryString creates a text-string with "1" and "0" characters
RandomStringBinaryStringBiasO creates a string as with RandomStringBinaryString
but biased by 25% towards producing "0" characters (75%-25% ratio). This is useful
for testing RLE and other data-compression.

RandomStringBinaryStringBias| creates a string as with RandomStringBinaryString
but biased by 25% towards producing "1" characters (75%-25% ratio). This is useful
for testing RLE and other data-compression.

Function - Integral

Declare:

Purpose:

Public Declare Function Integral Lib "mslib145.dIl" (ByVal d As Double) As Double

Returns the integer (integral) part of a double variable.
This function safely exposes the C/C++ modf() function

Function - Fraction

Declare:

Purpose:

Public Declare Function Fraction Lib "mslib145.dII" (ByVal d As Double) As Double

Returns the fraction or "decimal" part of a double variable.
This function safely exposes the C/C++ modf() function

VBToolbox Documentation 26 March 2011 Page 58 of 158

Function - Round

Declare: Public Declare Function Round Lib "mslib145.dIl" (ByVal d As Double,
Optional ByVal Places As Integer) As Double
Purpose: Rounds a VB double variable up to "n" places
Example: Dim x as Double
%x=123.456789
Round (x) T-> 123
Round (x, 1) T -> 123.5
Round (x, 2) ' -> 123.46
Round (x, 3) " -> 123.457
Round (x, 4) " -> 123.4568
Notes: This function may be dliased if required to avoid name-conflicts with later versions

of Visual BASIC or other languages.
Example alias:

Public Declare Function VBRound Lib "mslib145.dIl" Alias "Round"
(ByVal d As Double, Optional ByVal Places As Integer) As Double

VBToolbox Documentation 26 March 2011 Page 59 of 158

Date and Time Functions

Function - UKTolSODate

Declare:

Purpose:

Examples:

Notes:

See also:

Public Declare Function UKTolSODate Lib "mslib145.dIl" (ByVal
DDsMMsYYYY As String) As String

Converts a string in full UK DD-MM-YYYY date format to ISO format
(YYYYMMDD). Improperly formatted inputs return “00000000” (8 zeroes).

UKToISODate (“10-01-1969")
returns the string “19690110”

UKToISODate ("08+04-1968Hi!")
returns “19680408” (R/H-excess is OK and is ignored)

UKtoISODate (“08/04/68")
returns “00000000” (2-digit years are not allowed)

UKtoISODate (“8/4/68")
returns “00000000” (single digits are not allowed)

The string must be a minimum of 10 characters but any excess over that is ignored
The string must be formatted exactly in dd/mm/yyyy format. 2-digit years are not
allowed. Any separator character can be used (they are ignored).

No date-specific checks are made for the validity of the date held in the string.
ISO (International Standards Organisation) format time is also commonly known as
“Military Format” time in the US.

This function is the inverse of ISOToUKDate

UKShortTolSODate for non-Y2K format date conversion.
PHPDate, PHPDateNow

Function - ISOToUKDate

Declare:

Purpose:

Notes:

Public Declare Function ISOToUKDate Lib "mslib145.dll" (ByVal ISODate As
String) As String

Convert a date string in pure ISO format to a formatted UK-date string
Input is in the format “yyyymmdd” and output is “dd/mm/yyyy”

Checks are made on the length of the string and that only numeric characters are
passed to the routine No further date checks are made. It is up to the calling
routine to check if the date given and returned is actually a valid date. (e.g. not 49*
December 2049.

Date inputs which are not exactly 8 characters or which contain non numeric
characters cause a string “00/00/0000” to be returned.

ISO (International Standards Organisation) format time is also known as “Military
Format” time in the US.

This function is the inverse of UKTolSODate

VBToolbox Documentation 26 March 2011 Page 60 of 158

Function - UKShortTolSODate

Declare: Public Declare Function UKShortTolSODate Lib "mslib145.dIl" (ByVal
DDsMMsYY As String) As String

Purpose: Convert a “short” format UK date string into and ISO-date format string

Exa:n;ﬂes: UKShortToISODate ("08/04/68") returns the string “19680408”
UKShortToISODate ("08/04/50") returns the string “20500408”
UKShortToISODate ("08/04/49") returns the string ™“20490408”
UKShortToISODate ("08/04/68Hi!") returns the string “19680408”
UKShortToISODate ("08+04*68") returns the string “19680408”

Notes: Automatic “Century rollover” is performed as follows...

For dates over YY=50 dates are assumed to be 2050 onwards
For dates under YY=50 dates are assumed to be 1949 or lower

Due to this inaccurate representation of years use of 2-digit dates is not
recommended. Any code written will have an accurate “shelf-life” of less than 50
years and could eventually return incorrect dates.

The supplied string must be a minimum of 10 characters, any excess is ignored.
Primitive checks are made on the formatting of the string, separator characters such
as “/” or “-“ are ignored and no checks are made that the date is valid.

ISO (International Standards Organisation) format time is also known as “Military
Format” time in the US.

See also: UKTolSODate

Function - IsLeapYear

Declare: Public Declare Function IsLeapYear Lib "mslib145.dII" (ByVal Year As Integer) As
Boolean

Purpose: Returns True or False depending whether the year parameter is a leap year

Example: IsLeapYear (2000) returns “True”

Notes: Accurate to within the next century (after 2000 AD)

Function - NumOrd

Declare: Public Declare Function NumOrd Lib "mslib145.dII" (ByVal N As Integer) As
String

Purpose: Returns a 2-character text postfix for a given number

Example: Debug.Print “17;NumOrd(l),”2”;NumOrd(2),”3”;NumOrd (3)

Returns: “1st 2nd 3rd”

Notes: Accurate to within the next century

VBToolbox Documentation 26 March 2011 Page 61 of 158

Function - PHPDate

Declares: Public Declare Function PHPDate Lib "mslib145.dIl" (ByVal d As Date,
Optional ByVal s As String) As String

Purpose: Emulates the highly-flexible PHP date() function for any Visual BASIC date in the
PHP/Unix Epoch of Ist January 1970 to the 5th of February 2036 (inclusive).
For the full list of marker characters see the table below. See also PHPDateNow()
A properly formatted double such as 39619.8489467593 may be used as input in
place of a Visual BASIC date.

This function does not cover the full Visual BASIC date-range.
Errors: For dates outside the acceptable Unix epoch the string "ERR" is returned

Notes: Important - When VB creates a date object it does not adjust for local daylight-
savings-time (DST) within the date-object itself. If you want an accurate
representation of the current time with DST adjustment you must use
PHPDateNow instead.

For example the following code will NOT work if DST is in-force:
Debug.Print PHPDate(Now) 'Will print -1 hr out if DST +1 is in force

Swatch metric time is not implemented PHPDate("B") will return "0".

Milliseconds are not yet implemented since the granularity of the date() function is
less than about 100 milliseconds.

Static Date object variable passing is not yet supported but may be so in the future

Example: Debug.Print PHPDate (Now,"r")

Returns: “Sat, 28 Aug 2010 19:36:00 +0000”

Example: Debug.Print PHPDate (25569) ' Start of the Unix epoch
Returns: “Thu, 1lst January 1970 00:00:00”

Function - PHPDateNow

Declares: Public Declare Function PHPDateNow Lib "mslib145.dIl" (Optional ByVal s
As String) As String

Purpose: Emulates the highly-flexible PHP date() function for the current system date
providing it lies within the PHP/Unix Epoch of Ist January 1970 to the 5th of
February 2036 (inclusive).

For the full list of marker characters see the table applying to PHPDate
See also PHPDate

Notes: Correctly adjusts for Daylight Savings Time (DST)
For dates outside the acceptable Unix epoch the string "ERR" is returned

VBToolbox Documentation 26 March 2011 Page 62 of 158

Function - DSTAdjust

Declares: Public Declare Function DSTAdjust Lib "mslib145.dIl" (ByVal d As Date)
As Double
Purpose: Adjusts for local Daylight Savings Time (DST or "Summer Time")

When Visual BASIC creates a date variable no accounting is included for DST and
the function "Now()" returns a value devoid of DST adjustment. This means that if
you use the VB "Now()" function to get the current time and then use it with
PHPDate() it will display the wrong time. This time will represent the unadjusted
time (UTC).

Commonly +1 hour or, in rare cases, +2 hours might be added for local DST.
Normally you should use PHPDateNow() for the current system date and time,
However, If you wish to use PHPDate with a date/time value relevant to the current
system-locale then you can adjust for DST using the DSTAdjust() function.

Example: Where the current system-time shows 01:48:53 and a +1 hour DST adjustment is
in operation:

Debug.Print PHPDate (Now,"r")
Prints out “Fri, 20 Jun 2008 00:48:53 +0000”

Debug.Print PHPDate (DSTAdjust (Now),"r")
Prints out “Fri, 20 Jun 2008 01:48:53 +0000”

Notes: A +1 hour adjustment would result in 0.0417 being added to the current "decimal
time value". This represents an adjustment of +hr x 1/1440th of a second.

No adjustment is made for localised time zones by this function

VBToolbox Documentation 26 March 2011 Page 63 of 158

Table - PHPDate and - PHPDateNow Token Characters

Char | Name Description Example

\ Escape flag Escape a literal character "\T\i\m\e\ \i\s \n\o\w H:i:s"
A AM/PM Upper-case Ante Meridian marker "AM"

a am/pm Lower-case Ante Meridian marker "am"

B Swatch Metric Time | Not implemented (returns "0")

C C/C++ asctime() Print out the "C"/C++-style asctime() |"Sat Jun 21 22:46:24 2008"
string. The \n (LF) character is not
included and is thus < 26 chars long.
Implemented as the macro -

"D MdH:is Y"
Not-PHP/non-standard
c ISO 8601 date Implemented as the macro - "2004-02-12T15:19:21+00:00"
"Y-m-d\TH:i:sO"
D Day name 3 Day name - length 3 characters max |"Mon"
d Day number Day of the month - with leading "o1"
zeroes
e Time Zone Time Zone identifier string "GMT Standard Time"

This is always local to the PC and not
part of any supplied date variable

F Month name (full) | Full month name "January"

g Hour - H [2-hour format hour value with no "9" (pm)
leading zeroes

H Hour - HH 24-hour format hour value with "21" (pm)
leading zeroes

h Hour - HH [2-hour format hour value with "09" (pm)
leading zeroes

I DST Query | if Daylight Savings Time (DST) "0" (not in force)

enabled - 0 if not
This is always local to the PC and not
part of any supplied date variable

i Minutes Minutes formatted with leading zero | "09"

j Month Day Day of the month with NO leading "
zeroes - .31 maximum

L Leap Year Leap Year Query. | if True, 0 if not "
Valid only for dates in the Unix epoch

I Full Day Name Full day name "Monday"

M Month Name 3 3 digit month name prefix "Jan"

mm | Month Number 2-digit month number with zero prefix | "01"

®) GMT Diff Difference from GMT in hours with +0100
+/- sign.

This is always local to the PC and not
part of any supplied date variable

P GMT Diff Colon Difference from GMT in hours with +01:00
+/- sign and separating colon

This is always local to the PC and not
part of any supplied date variable

VBToolbox Documentation 26 March 2011 Page 64 of 158

r ISO822 RFC RFC formatted date string - "Fri, 20 Jun 2008 02:10:21" +0000"
implemented as a macro -
"D,d MY H:i:s O"
S Ordinal Day Ordinal day of the month "st"
s Seconds Second value with leading zero "ol"
t Month Days Days of the month "30"
U Unix Epoch Seconds elapsed since the start of the |"1213928007"
Unix Epoch on Ist January 1970
ww | Weekday Weekday number starting with 0 for | "0"
Sunday and ending at 6 for Saturday
Y Full Year Full, 4-digit year "2008"
Short Year Two-digit year value "08"
Time Zone Time Zone offset in seconds from "0"
GMT-0
This is always local to the PC and not
part of any supplied date variable
z Year Day Day of the Year - starting at zero "0"
Notes: PHPDate() and PHPDateNow() both implement all date tags of the equivalent PHP

function except:

"B" - (Swatch metric time)

vlu

" - (milliseconds)

Additional non-PHP (non-standard) tags are given as:

"C" - (capital C) - "C"/C++ asctime() format

Note that "literal" characters may be retained by "escaping" with a backslash
character the same as with the PHP version of date() - e.g. "\T\o\d\a\y \i\s I" will
print - "Today is Monday"

There should be little need to embed literals within a date-format string unless
there is a practical need to embed literal characters deep within a complex date
format as with the "C" macro flag.

VBToolbox Documentation

26 March 201 |

Page 65 of 158

Function - VBDateStr
Declares: Public Declare Function VBDateStr Lib "mslib145.dIl" (ByVal d As Date) As String

Purpose: Returns the internal representation of a Visual BASIC date object. This is returned
as a string representation of a double. The integral part of this number represents
the number of days since the start of the VB epoch at midnight on 30th December
1899 to the end of December 1999.

Notes: The date is stored in decimal format. The fractional component represents
part of a single day in nanoseconds. The last 3 digits of this represent the time in
milliseconds.

The exact double value of 0.0 represents "00:00:00 30 hrs on December 1899".
Negative numbers are permitted which extend the range backwards in time. Thus,
the earliest date and time in the Date range, 00:00:00 | January 100 maps to the
negative double value -657434.0. The highest permitted date and time in the Date
range, is "23:59:59 31 December 9999" (10,000AD -1 second) which is represented
by the Double value 2958465.99998843.

Example: Debug.Print VBDateStr (Now)

Returns: "40383.905428240738" (24/07/2010 21:43:49)

Function - VYBDateMsecs

Declares: Public Declare Function VBDateMsecs Lib "mslib145.dIl" (ByVal d As Date)
As Integer

Purpose: Returns the number of milliseconds stored in a Visual BASIC date object

Notes: Experimental only. This value is normally inaccessible. not exposed by VB and is

apparently updated only every | second
Example: Debug.Print VBDateMsecs (now)

Returns: 189

Function - VBDateToCTime

Declares: Public Declare Function VBDateToCTime Lib "mslib145.dIl" (ByVal d As Date)
As Long
Purpose: Converts a Visual BASIC date variable and returns it as a long formatted as a "C"

style time_t variable.

Notes: If the date supplied is outside the Unix epoch or otherwise invalid then -1 is
returned to indicate the error.

Example:

Dim d as Date

d=#6/20/2008 10:12:01 PM#

Debug.Print "VBDateToCTime (d)="VBDateToCTime (d)
Returns: "VBDateToCTime (d)= 1213992721 "

VBToolbox Documentation 26 March 2011 Page 66 of 158

Function - DateToHex

Declares:

Purpose:

Notes:

Example:
Returns:

See also:

Public Declare Function DateToHex Lib "mslib145.dll" (ByVal d As Date) As String
Converts a Visual BASIC date variable into "storage" hex-format. This is a precise
byte-representation of the variable's memory image and is 100% precise with no

rounding effects incurred during storage and retrieval.

The VB Date variable is a "C"-style Double value.
The inverse function HexToDate() returns the original Date or Double value

Debug.Print DateToHex (#6/20/2008 10:12:01 PM#)
62DFB1997D58E340

HexToDate, MKD, CVD

Function - HexToDate

Declares:

or:

Purpose:

Notes:

Example:

Returns:

See also:

Public Declare Function HexToDate Lib "mslib145.dll" (ByVal s As String)
As Double

Public Declare Function HexToDate Lib "mslib145.dll" (ByVal s As String)
As Date

Converts a Visual BASIC date variable which has been converted into "storage" hex-
format back into either a VB Double or Date variable. This conversion method is an
exact byte-representation of the variable's memory image and is 100% precise with
no rounding effects incurred during storage and retrieval. This makes it suitable for
cross platform storage such as in SQL: databases where accuracy could be lost in
storing as a converted form of Double.

It is important to note that the VB Date variable is a "C"-style Double value.
Declaring as a Date rather than Double merely causes VB to interpret the date
differently. The inverse function, DateToHex(), is used to convert the value to hex
format

Either declaration may be used. If the Double return version is chosen then Cdate()
must be used in order for VB to interpret the value as a Date

The hex string can only be retrieved by HexToDate() on the same O/S platform and
CPUe-architecture since it will be byte-order and implementation dependent.

Debug.Print HexToDate (DateToHex (#6/20/2008 10:12:01 PM#))

Either 39619.9250115741 or "6/20/2008 10:12:01 PM"
depending on the declare used.

DateToHex, MKD, CVD

VBToolbox Documentation 26 March 2011 Page 67 of 158

Legacy BASIC Conversion Functions

Visual BASIC 5.0 has the following standard numeric data types which correspond with many “C”/C+
+ compiler standard numeric types as char, int, long, float and double. The function names are
acronyms for “make” and “convert” - i.e. “make integer string” is Mki and convert to integer Cvi.

Byte (not implemented) | byte 0 to 255 (unsigned)

Integer 2 bytes -32,768 to 32,767 ("C" short integer)

Long (long integer) 4 bytes -2,147,483,648& to 2,147,483,647&

Single (single-precision floating-point) 4 bytes -3.402823E38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E38 for positive values

Double (double-precision floating-point) 8 bytes -1.79769313486232E308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308 for
positive values

Microsoft Visual C++ has basic data types in the range which either match or are a very close match

to those in VB ...

short
int
long
float

double

Two bytes - -32,768 to 32,767

Two or Four bytes (System dependent)
four bytes, -2,147,483,648 to 2,147,483,647
four bytes - 3.4E +/- 38 (7 digits)

eight bytes - |.7E +/- 308 (15 digits)

Functions - Mki and Cvi (Integer)

Declares:

Purpose:

Example:

Returns:

Public Declare Function Mki Lib "mslib145.dIl" (ByVal | As Integer) As String
Public Declare Function Cvi Lib "mslib145.dIl" (ByVal Str As String) As Integer

Convert a VB integer value (equivalent to a two-byte “C” int from -32,768 to
32,767) to a two-byte binary-string representation

Debug.Print Cvi (Mki (32000))

"32000"

Functions - Mkl and Cvl (Long)

Declares:

Purpose:

Example:

Returns:

Public Declare Function Mkl Lib "mslib145.dIl" (ByVal L As Long) As String
Public Declare Function Cvl Lib "mslib145.dIl" (ByVal Str As String) As Long

Convert a VB long value (equivalent to a two-byte “C” long in the range -
2,147,483,648 to 2,147,483,647) to a four-byte binary-string representation

Debug.Print Cv1l (Mk1(1818181818))

"1818181818"

VBToolbox Documentation 26 March 2011 Page 68 of 158

Functions - Mkf and Cvf (Float)

Declares: Public Declare Function Mkf Lib "mslib145.dll" (ByVal F As Single) As String
Public Declare Function Cvf Lib "mslib145.dll" (ByVal Str As String) As Single

Purpose: Convert a VB long value (equivalent to a four-byte “C” float in the range
3.4E +/- 38 (7 digits)) to a four-byte floating-point binary-string representation.

Example: Debug.Print Cvf (Mkf (66666.66))

Comment: Note that rounding can be expected from the fraction part of the number

Functions - Mkd and Cvd (Double)

Declares: Public Declare Function Mkd Lib "mslib145.dlI" (ByVal D As Double) As String
Public Declare Function Cvd Lib "mslib145.dll" (ByVal Str As String) As Double

Purpose: Convert a VB long value (equivalent to eight-byte “C” double in the range
|.7E +/- 308 (I5 digits)) to an eight-byte floating-point binary-string representation.

This is useful for storing VB Date objects as these are stored internally as Double

values.
Example: Debug.Print Cvd (Mkd (66666666666.666))
Returns: 66666666666.666
See also: DateToHex, HexToDate

VBToolbox Documentation 26 March 2011 Page 69 of 158

Data Encoding Functions

Various functions which transform or convert data.

Function - BaseConv

Declare:

Purpose:

Example:

Comment:

Public Declare Function BaseConv Lib "mslib145.dlI" (ByVal x As Integer, ByVal
Base As Integer) As String

Convert any VB integer value (Byte, Integer or Long) to a string representation in
any base from 2 to |6 inclusive.

BaseConv (451, 3) returns the string “121201”
BaseConv (451, 2) returns the string “111000011”
BaseConv (451, 16) returns the string “1C3”

Note that the VB "Long" data-type is an unsigned value, hence conversion of values
in the upper-range where the sign-bit is set will trigger an overflow (Error 6).
Example: BaseConv(HexTolLong("FFFFFFFF")) will trigger this error. Use
BaseConvDouble for values outside Ox7FFFFFFF

Function - BaseConvDouble

Declare:

Purpose:

Example:

Comment:

Public Declare Function BaseConvDouble Lib "mslib145.dll" (_
ByVal x As Double, ByVal Base As Integer) As String

Convert any Double VB integer value to a string representation in

any base from 2 to |6 inclusive for values in the range (0 to 4,294,967,295)
Although a Double can hold far higher values accuracy of conversion of Double
integers values is limited. Maximum input range is therefore set at OxFFFFFFFFFFFFF
(4503599627370495)

BaseConvDouble (68719476735, 8) returns the string “777777777777"
BaseConvDouble (1099511627775,12) returns the string “159114277313”
BaseConvDouble (728121033505,16) returns the string “A987654321"”

Note that the VB "Long" data-type is an unsigned value, hence conversion of values
in the upper-range where the sign-bit is set will trigger an overflow (Error 6).

As the Visual BASIC Long data-type is a signed value in the range -2,147,483,648 to
2,147,483,647 you should use BaseConvDouble() in preference to BaseConv()
for 4-byte Unsigned Long values in the range (0 to 4,294,967,295)

BaseConvDouble is intended primarily to handle the range of a 32-bit/4-byte
"unsigned long" (OxFFFFFFFF) but is accurate up to 52 bits or OxFFFFFFFFFFFFF
(4.50359963 x 10715) at base 2.

VBToolbox Documentation 26 March 2011 Page 70 of 158

VB Wrapper - Base$()

Declare:

Purpose:

Example:

Result:

Comment:

Public Function Base$(x As Variant, BaseVal As Integer)
Wrapper function for BaseConv

Converts a VB Integer value (Byte, Integer or Long) to a string in any base value
from2to |16

For i=2 to 16
Debug.Print i, Base$(32767,1)

Next
2 111111111111111
3 1122221121
4 13333333
5 2022032
6 411411
7 164350
8 77777
9 48847
10 32767
11 22689
12 16B67
13 11BB7
14 BD27
15 9A97
16 TEFF

Returns from Base$() do not need to be converted using VBStr()
You can call BaseConv() directly if you wish but the wrapper function provides
some degree of safety and type-protection.

You can use Base$() for numbers outside of the range of a Visual BASIC signed-long
(-2,147,483,648 to 2,147,483,647 (7FFFFFFF)) which is the maximum value
BaseConv() can handle within LongToHex()

VBToolbox Documentation 26 March 2011 Page 71 of 158

Function - Bin8, Binlé, Bin32

Declares:

Purpose:
Example:

Notes:

Public Declare Function Bin8 Lib "mslib145.dIl" (ByVal i As Byte) As String
Public Declare Function Binl6 Lib "mslib145.dIl" (ByVal i As Integer) As String
Public Declare Function Bin32 Lib "mslib145.dIl" (ByVal i As Long) As String

Number-to-binary string conversion
Bin16(234) gives the resulting string “0101011100000000”

You must use the correct version for the data type you are calling with or
unpredictable things can happen.
The inverse function for all of these is BinToDec()

Note also that some VB functions such as “Val()” always return a “Double” which
is not supported. In such cases you need to convert to the correct type using...

CByte() Converts to Byte data type
Clint() Converts to Integer data type
CLng() Converts to Long data type

Use Bin32(CLng(Val("&hOOFFFFFFFF"))) rather than Bin32(Val("&hOOFFFFFFFF"))

VB Wrapper - Bin$()

Declares:
Include File:

Purpose:

Notes:

Public Function Bin$(x As Variant)
MSLIB145.BAS

Wrapper function for Bin8(), Bin16() and Bin32() conversion functions
Bin$() will automatically detect Byte, Integer or Long data types and call the correct
number-to-binary string functions for you.

In case of problems “Debug.Print” trace lines are included in the function.
Note that some VB functions always return a “Double” which needs to be
converted to the correct data type for the conversion functions.

Function - BinToDec

Declares:
Purpose:

Example:

Notes:

Public Declare Function BinToDec Lib "mslib145.dll" (ByVal s As String) As Long
Convert a binary string produced by Bin$() etc. al. to a decimal numeric value

BintoDec ("1101") Returns 13
BintoDec ("&b1101™) Returns 13

Maximum range of 32 bits. (0.. 2147483647 for signed values)

Supplied text can be any length from | to 32 characters in length

The case-insignificant prefix "&b" is accepted - e.g. "&b1001110"

Non-bit value characters cause evaluation to terminate and the number to be
evaluated for "n" characters to that point - e.g. "1 111abc0100" = 15 decimal
Excess text over 32 characters is ignored.

There is only one function, which returns a VB Long - you can use Cint() or CByte()
to convert to other numeric ranges.

There is no VB Double equivalent - use Cdbl() to convert

VBToolbox Documentation 26 March 2011 Page 72 of 158

Function - DecToBin

Declares: Public Declare Function DecToBin Lib "mslib145.dIl" (ByVal i As Long, _
Optional ByVal StripLeadingZeroes As Boolean = False) As String

Purpose: A convenient wrapper for the Bin8, Binl6 and Bin32 conversion functions

Notes: The function automatically-detects which of the 3 binary conversion functions to

call. Additionally, leading zeroes may be omitted from the returned string.
Bin8..Bin32 usually return fixed-length strings which include leading zeroes.

See also: Bin8, Binl 6, Bin32, BinToDec

Function - HiByte
Declares: Public Declare Function HiByte Lib "mslib145" (ByVal i As Integer) As Byte

Purpose: Returns the topmost Byte (8-bits) of a Visual BASIC | 6-bit Integer (Word)

Function - HiWord
Declares: Public Declare Function HiWord Lib "mslib145" (ByVal | As Long) As Integer

Purpose: Returns the topmost Integer or Word (| 6-bits) of a Visual BASIC 32-bit Long

Function - LoByte
Declares: Public Declare Function LoByte Lib "mslib145" (ByVal i As Integer) As Byte

Purpose: Returns the lowermost Byte (8-bits) of a Visual BASIC |6-bit Integer (Word)

Function - LoWord
Declares: Public Declare Function LoWord Lib "mslib145" (ByVal | As Long) As Integer

Purpose: Returns the lowermost Integer or Word (16-bits) of a Visual BASIC 32-bit Long

VBToolbox Documentation 26 March 2011 Page 73 of 158

Functions - Bit-Rotation - RotIByte, RotrByte, Rotlint, Rotrint, RotlLong,
RotrLong

Declares:

Public Declare Function RotIByte Lib "mslib145" (ByVal b As Byte, ByVal Bits
As Byte) As Byte

Public Declare Function RotrByte Lib "mslib145" (ByVal b As Byte, ByVal Bits
As Byte) As Byte

Public Declare Function Rotlint Lib "mslib[45" (ByVal i As Integer, ByVal Bits
As Byte) As Integer

Public Declare Function RotrInt Lib "mslib145" (ByVal i As Integer, ByVal Bits
As Byte) As Integer

Public Declare Function RotlLong Lib "mslib145" (ByVal | As Long, ByVal Bits
As Byte) As Long

Public Declare Function RotrLong Lib "mslib145" (ByVal | As Long, ByVal Bits
As Byte) As Long

Description: Offers logical bit-rotation which can be implemented in "C" using the ">>" and
"<<" bitshift operators. Function nomenclature is Sh[Left|Right][Type]

Notes: Note that this is a logical bitshift without carry and not an arithmetic one.
For more information see the following Wikipedia page:
http://en.wikipedia.org/wiki/Circular_shift

Logical bit-rotation is useful for encryption and graphics image processing

There is no Double bit-rotate

Example:
Dim ByteVal as Byte
ByteVal = &HCC ' Set a bit-pattern (0b11001100) to rotate
For i = 0 To 10
Debug.Print "RotLByte (0b"; Bin$ (Byteval); ",";
Debug.Print Format (i, "000"); ")=0b"; Bin$ (RotlByte (Byteval, 1))
Next
Result:
RotLByte (0b11001100, 000)=0b11001100 ' Identity @ O
RotLByte (0b11001100, 001)=0b10011001
RotLByte (0b11001100, 002)=0000110011
RotLByte (0b11001100, 003)=0001100110
RotLByte (0b11001100, 004)=0b11001100
RotLByte (011001100, 005)=0b10011001
RotLByte (0b11001100, 006)=0000110011
RotLByte (0b11001100, 007)=0b01100110
RotLByte (0b11001100, 008)=0b11001100 ' Identity @ 8
RotLByte (0b11001100, 009)=0010011001
RotLByte (0b11001100, 010)=0b00110011
See also: RotateByte, Rotatelnt, RotateLong

VBToolbox Documentation 26 March 2011 Page 74 of 158

Functions - Bit-Shifting - ShiByte, ShrByte, Shlint, Shrint, ShiLong, ShrLong

Declares:

Description:

Notes:

Example:

Result:

See also:

Public Declare Function ShiByte Lib "mslib145" (ByVal b As Byte, ByVal Bits
As Byte) As Byte

Public Declare Function ShrByte Lib "mslib145" (ByVal b As Byte, ByVal Bits
As Byte) As Byte

Public Declare Function Shlint Lib "mslib145" (ByVal i As Integer, ByVal Bits
As Byte) As Integer

Public Declare Function Shrint Lib "mslib145" (ByVal i As Integer, ByVal Bits
As Byte) As Integer

Public Declare Function ShlLong Lib "mslib145" (ByVal | As Long, ByVal Bits
As Byte) As Long

Public Declare Function ShrLong Lib "mslib 145" (ByVal | As Long, ByVal Bits
As Byte) As Long

Offers logical bit-shifting which is implemented in "C" using the ">>" and
"<<" bitshift operators. Function nomenclature is Sh[Left|Right][Type]

Bits are shifted either to the left or right by "N" bits as specified with the void filled
with zero values. Identity occurs every zero or modulus BITWIDTH bits shifted.

The Bits parameter is masked to BITWIDTH-1 (e.g. 0..7 for Byte) and repetition will
occur with values higher than BITWIDTH

Even if the Bits parameter were not masked to BITWIDTH, identity still occurs with
compiled DLL code but at a much larger and less-intuitive interval. Such behaviour is
compiler-dependent.

This function offers a logical rather than arithmetic bit-shift. Sign bits are not
preserved. For more information see the following Wikipedia page:
http://en.wikipedia.org/wiki/Logical_shift

Logical bit-shifting is useful for encryption and graphics image processing

There is no Double bit-shift

ByteVal = &HFF ' 0bl11111111
For i = 0 To 10
Debug.Print "Shlbyte("; Byteval; ","; i; ")=";
Debug.Print Bin$ (ShlByte (Byteval, 1))
Next
Shlbyte(255 , 0)=11111111 ' Identity @ O
Shlbyte (255 , 1)=11111110
Shlbyte (255 , 2)=11111100
Shlbyte(255 , 3)=11111000
Shlbyte(255 , 4)=11110000
Shlbyte(255 , 5)=11100000
Shlbyte(255 , 6)=11000000
Shlbyte(255 , 7)=10000000
Shlbyte (255 , 8)=11111111 ' Identity @ 8
Shlbyte(255 , 9)=11111110
Shlbyte(255 , 10)=11111100

RotateByte, Rotatelnt, RotateLong

VBToolbox Documentation 26 March 2011 Page 75 of 158

Function - RotateByte

Declare: Public Declare Function RotateByte Lib "mslib145.dll" (ByRef b As Byte) As Byte
Purpose: Rotates or "inverts" the high and low nibbles of a single byte.
Notes: This nibbles are swapped from left to right i.e. AB -> BA, for example.

OXIF -> O0xF| (hexadecimal). Values are passed ByRef (BYTE*)

Note that the return may be interpreted in some cases as signed value when the
top (leftmost) bit is set

The function may be called repeated to re-invert to the original value

Example: Debug.Print RotateByte ("C9")
Result: "oc
See also: Bit-Shifting functions, Bit-Rotating functions

Function - Rotatelnt

Declare: Public Declare Function Rotatelnt Lib "mslib145.dll" (ByRef i As Integer)
As Integer

Purpose: Rotates or "inverts" the high and low nibbles of a single two-byte integer.

Notes: Note that on some systems an integer may be defined as a four-byte value

Bits are rotated in "little to big endian" order i.e.

ABCD -> DCBA - where each letter represents a single byte value
For example OxFIE2 -> 0x2EIF (hexadecimal)

Values are passed ByRef (WORD¥)

The return may be interpreted in some cases as signed value when the top
(leftmost) bit is set

The function may be called repeated to re-invert to the original value

Example: Debug.Print RotateInt ("2E74")
Result: "47E2"
See also: Bit-Shifting functions, Bit-Rotating functions

VBToolbox Documentation 26 March 2011 Page 76 of 158

Function - RotateLong

Declare:

Purpose:

Notes:

Example:

Result:

Example:

Result:

See also:

Public Declare Function RotateLong Lib "mslib[45.dll" (ByRef | As Long) As Long

Rotates or "inverts" the high and low nibbles of a four-byte long integer

Note that on some systems an integer may be defined as a four-byte value

Bits are rotated in "little to big endian" order i.e.

ABCDEFGH -> HGFEDCBA - where each letter represents a single byte value, for
example OxFIE2D3C -> O0xC3D2E|F (hexadecimal). Values are passed ByRef (long*)

The return may be interpreted in some cases as signed value when the top
(leftmost) bit is set

The function may be called repeated to re-invert to the original value
Debug.Print RotateLong ("1A236F77")

"77F632A1"

Debug.Print RotateLong (RotateLong ("1A236F77"))

"1A236F77"

Bit-Shifting functions, Bit-Rotating functions

VBToolbox Documentation 26 March 2011 Page 77 of 158

Function - StrToHex

Declare:

Purpose:

Example:

Comment:

See also:

Public Declare Function StrToHex Lib "mslib[45.dIl" (ByVal s As String, _
ByVal Length As Long, Optional ByVal WrapWidth As Integer) As String

Converts a binary or text-string into a hexadecimal-coded string. Each character is
represented by its two-byte “hex” pair. The resulting string may, optionally, be line-
wrapped by CRLF pairs after "WrapWidth" byte-pairs. Note that this is byte-pairs
not characters.

Debug.Print StrToHex (“Hello World!”,12)
Prints out: “48656C6C6F20576F726C6421”

The returned string is always twice as long as the supplied ANSI string. If line-
wrapping is enabled then this length is increased by 2 bytes for each unit of
WrapWidth. The length of the returned string is limited only by the available
memory on the PC. A quick ASCII reference is that “A” = 65 (0x41), “a” = 97
(0x61)

Since StrToHex() may be used to encode “binary” strings containing embedded
NULL characters such as those produced by EncryptString() this version requires

the length of the passed string to be specified.

StringToHex, HexToStr

Function - StringToHex

Declare:

Purpose:

See also:

Public Declare Function StringToHex Lib "mslib145.dIl" (ByVal s As String) As String

An alternate to StrToHex() where the encoded string can be guaranteed NOT to
have embedded NULL (0x00) characters within it. Where there is a likelihood of
embedded NULL characters you should use StrToHex() instead and keep track
of/pass the string length value.

StrToHex, HexToStr

Function - HexToStr

Declare:

Purpose:
Example:
Result:

Comment:

See also:

Public Declare Function HexToStr Lib "mslib145.dII" (ByVal s As String)
As String

Converts a “hex-coded” string, as produced by StrToHex into its original form.
Debug.Print HexToStr (“48656C6C6F20576F726C6421")
“Hello World!”

The inverse of StrToHex(). The length of the returned string is always half the
original size

StrToHex, StringToHex

VBToolbox Documentation 26 March 2011 Page 78 of 158

Function - HexToChar

Declare:

Purpose:

Example:

Public Declare Function HexToChar Lib "mslib145.dll" (ByVal HexPair As
String) As Byte

Returns the value (char/Byte in the range 0..255) of a 2-byte text string in
hexadecimal format. This is the inverse of CharToHex.

Only valid hex characters in the range "0".."F" are allowed.

The value may be supplied either as raw hex ("FF"), VB Style hex, (&HFF) or "C"
style hex (OxFF).

HexToChar (“A2”) 'returns the Byte value 162

Function - HexTolnt

Declare:

Purpose:

Public Declare Function HexTolnt Lib "mslib145.dIl" (ByVal Str As String)
As Integer

Convert a string value of up-to 2 valid hex-bytes (4 characters/nibbles) into a signed
integer value in the range -32,768 to 32,767. This is not returned "unsigned” due to
intrinsic the signed nature of the VB integer data-type.

The value may be supplied either as raw hex ("FF"), VB Style hex, (&HFF) or "C"
style hex (OxFF).

For unsigned values within the range of an 16-bit unsigned int (WORD) use
HexToLong. Only valid hex characters in the range "0".."F" are allowed. Any other
value returns zero.

Function - HexTolLong

Declare:

Purpose:

Public Declare Function HexToLong Lib "mslib145.dII" (ByVal Str As String)
As Double

Convert a string value of up-to 4 valid hex-bytes (8 characters/nibbles) to a VB
interpretation of an unsigned long. This is emulated by returning as a double to
ensure the value held by the "C" DLL is preserved. Values are returned in the range
0x0 to OXFFFFFFFF (0 to 4294967295).

The value may be supplied either as raw hex ("FF"), VB Style hex, (&HFF) or "C"
style hex (OxFF).

String values longer than 8 characters return zero.
Only valid hex characters in the range "0".."F" are allowed.

VBToolbox Documentation 26 March 2011 Page 79 of 158

Function - HexToDouble

Declare: Public Declare Function HexToDouble Lib "mslib145.dIl" (ByVal Str As String)
As Double
Purpose: Convert a 32-bit hexadecimal string value of up-to 8 valid hex-bytes (16 characters/

nibbles) into a VB representation held as a Double. Only valid hex characters in the
range "0".."F" are allowed.

Notes: Due to the limitations of useful data-types in Visual BASIC. precise accuracy is lost
as representation changes to floating-point values much larger than 0x2 FFFF FFFF
FFFF (844424930131967). Values of Ox3FFF FFFF FFFF and larger are represented in
approximated "scientific" notation -
e.g. 1.12589990684262E+15 for Ox3FFF FFFF FFFF.

Reliability is good for numbers up to 48-bits (OxFFFFFFFFFFFF)

The value may be supplied either as raw hex ("FF"), VB Style hex, (&HFF) or "C"
style hex (OxFF).

Calculations are performed internally using 64-bit integers before the value is
converted and returned as a Double. Due to differing floating-point representations
it is difficult to compare and check 100% during development and testing. However
the function has been checked using several methods and is certainly accurate up to
0x2 FFF FFFF FFFF (844424930131967). Values outside this range return as follows...

Hex value Result Check/Comments
0xFFFF FFFF FFFF |281474976710655 (24-bits)
0x1 FFFF FFFF FFFF |562949953421311 (25-bits)
0x2 FFFF FFFF FFFF |844424930131967 (26-bits)
0x3 FFFF FFFF FFFF |1.13E+015 (Google = 1.12589991 x 10715)
0x4 FFFF FFFF FFFF |1.41E+015 (Google = 1.40737488 x 10715)
0x9 FFFF FFFF FFFF |2.81E+015 (Google = 2.81474977 x 10715)
0xA FFFF FFFF FFFF |3.10E+015 (Google = 3.09622474 x 10715)
0xF FFFF FFFF FFFF |4.50E+015 (WinCalc) = 4503599627370495)
0xFF FFFF FFFF FFFF |7.21E+016 (Google 7.2057594 x 10°16)
0xFFF FFFF FFFF FFFF |1.15E+018 (Google 1.1529215 x 10°18)
OXFFFF FFFF FFFF FFFE -1 (Google 1.84467441 x 10719) (Error)
Function - CharToHex
Declare: Public Declare Function CharToHex Lib "mslib[45.dIl" (ByVal i As Byte) As String
Purpose: Takes an unsigned | byte character (Byte) and returns a numeric value in a 2-byte

hex-character formatted-string in the range 0x00 to Oxff. ("00" to "FF") This is the
inverse of HexToChar

Example: CharToHex (65) 'Returns the string “41” (which is 65 in decimal)

Comment: The return value is always 2-bytes plus a terminating NULL character
Use IntToHex() or LongToHex() for values outside the 0..255 range

VBToolbox Documentation 26 March 2011 Page 80 of 158

Function - IntToHex

Declare:

Purpose:

Example:

Notes:

Public Declare Function IntToHex Lib "mslib145.dll" (ByVal i As Integer) As String

Takes a signed integer in the range 0..32767. Returns a 4-byte hex-formatted
string integer value in the range 0x0000 to 0x7FFF ("0000" to "7FFF")

IntToHex (90) 'Returns the 4-byte string “005Aa”

Use CharToHex() for values in the range 0 to 255 or HexLong for larger values.
Note that the built-in "Hex$()" can only handle values of signed long which makes it
ineffective for processing IP address values of unsigned long where an Overflow (6)
would result.

Function - LongToHex

Declare:

Purpose:

Example:

Notes:

Public Declare Function LongToHex Lib "mslib[45.dII" (ByVal | As Double) As
String

Takes a 32-bit unsigned long in the range 0..4294967296 (0..0xFFFFFFFF).
Returns an 8-byte hex-formatted string integer value in the range
0x0000 to Ox7FFF ("0000" to "7FFF")

IntToHex (90) 'Returns the 4-byte string “005Aa”

A double is used to pass from VB in order to ensure that the correct unsigned

range is passed from VB without unnecessary conversion rather than a signed value
max of 0x7FFFFFFF.

For numbers outside the range of a VB signed-long you can use the slower Base$()
wrapper function or call Base() directly. Strings of ASCII and binary characters may
be converted using StrToHex()

VBToolbox Documentation 26 March 2011 Page 81 of 158

Function - BitPack

Declare: Public Declare Function BitPack Lib "mslib145.dll" (ByVal s As String, Optional
ByVal Length As Long) As String

Purpose: Packs or compresses a numeric string into half of it's original length

The function will not compress or handle any other character than those specified.
If optional parameter"Length" is specified then only this number of bytes will be
packed and returned; the remainder will be ignored.

Notes: Valid characters are numeric digits 0 to 9, space, "+", "-", comma, and period only.
Processing will halt and any resulting string will be truncated and returned at the
first non-valid character. Thatis- "0123456789 +-,.")

Compression is 100% constant regardless of the number of bytes compressed and is
not affected by random-entropy. Characters are compressed into a 4-bit encoding
system which contains 2 characters per 8-bit output character.

Note that there is normally no useful compression-advantage in storing numbers as
strings regardless of the effectiveness of any compression routine. For large values
see BCD functions.

The returned string is a NULL-terminated string with characters being in the range
of 17 to 255 decimal (0x 1| to OxFF) which must be processed using VBStr() before
further direct use other than by BitUnpack() or another VBToolbox function.

The reduced length of a string containing an even number of characters is precisely
half the original length (+ | byte for odd string lengths)

The string may be viewed using StrToHex() but cannot normally be printed out.
BitPack() may be used to sequentially pack large quantities of numeric values for
storage into database fields. Note that any field or storage used to hold the result
must be capable of handling the full unsigned char range of 17 to 255 (OxI | to
OxFF) for each character and the result is, effectively a binary-string.

Can be used to store and compress very long numbers as text without resorting to
linking-in a ZIP library. Was developed to store large Pl values as a string.

Exarn;ﬂe: Debug.Print Len (VBStr (BitPack (RandomStr (100, RandomStringNumeric))))
Prints out "51" indicating a 49% reduction in length

Debug.Print BitUnPack (BitPack("0123456789"))
Prints out "0123456789" indicating cyclic consistency check pass OK

Debug.Print VBStr (StrToHex (BitPack ("+,-. 0123456790abc")))
Prints out "BCDEF12345678A10"

VBToolbox Documentation 26 March 2011 Page 82 of 158

Function - BitUnPack

Declare:

Purpose:

Notes:

Example:

Public Declare Function BitUnPack Lib "mslib145.dII" (ByVal s As String,
Optional ByVal BitPairs As Long) As String

The inverse of BitPack. Unpacks (unzips) a numeric string which has been packed
only by a call to BitPack. If optional parameter"Length" is specified then only this
number of bit-pairs will be unpacked and returned; the remainder will be ignored.

Note that this will be bit-pairs not single-bytes.

Only strings which have been compressed by BitPack should be passed to this
function otherwise the resulting string will contain unpredictable contents.

BitUnPack expands the length of a string by 100% (+/-1 byte for odd values)

The maximum string length which may be supplied is limited naturally by the output
of BitPack. However if you manage to artificially construct BitPack binary strings
then a string no longer than half the maximum VB string size should be supplied or a
system fault may occur.

Debug.Print BitUnPack (BitPack ("1234567890"))

Prints out "1234567890" ' Cyclic test check pass OK

VBToolbox Documentation 26 March 2011 Page 83 of 158

Function - DecodeStringé4

Declare:

Purpose:

Notes:

See also:

Public Declare Function DecodeString64 Lib "mslib 145.dIl" _
(ByRef slnput As String, ByRef NewLength As Long) As String

Decodes a string (binary or otherwise) that has been text-encoded in “base-64"
format. By EncodeString6é4. Commonly used within encryption routines.

The return value is passed via the function body
A buffer is allocated internally and returned to Visual BASIC via the function body.
VB takes care of deallocation and garbage-collection.

Since “binary” string containing embedded NULL (0x00) characters may be supplied
to DecodeString64() it calculates the exact length of the allocated string and returns
it via the “NewLength” parameter. You must not change the ByRef declaration for
this variable.

If you wish to use nested “DecodeStringé4(EncodeString64(...“ statements but don't
wish to use the NewLength parameter supply a dummy variable: e.g.

Dim | as Long;
Debug.Print DecodeString64(EncodeString64(“Hello World”,l))

EncodeString64, RLEDecompress

Function - EncodeString64

Declare:

Purpose:

Notes:

See also:

Public Declare Function EncodeString64 Lib "mslib145.dll" (_
ByVal sInput As String, _
Optional ByVal WrapWidth As Integer = 0) As String

Encodes a string (binary or otherwise) in text-encoded “base-64" format.
Commonly used within email or encryption routines.

The return value is passed via the function body

A buffer is allocated internally and returned to Visual BASIC via the function body.
VB takes care of deallocation and garbage-collection.

If WrapWidth is set to zero (default) then CRLF block-wrapping is disabled.

DecodeString64, RLECompress functions

VBToolbox Documentation 26 March 2011 Page 84 of 158

Function - EncryptString

Declare: Public Declare Function EncryptString Lib "mslib145.dll" (ByVal s As String, _
ByVal Length As Long, ByVal Password As String, _
Optional ByVal Salt As String =", _
Optional ByVal ExtraSecure As Boolean = True) As Boolean

Purpose: Provides symmetric XOR-encryption of a text string using a password.

This does not offer a high-level of security as with PGP, AES or RSA, nevertheless it
would not be trivial to crack the encrypted text without specialised software The
longer the password the better as this is also hashed into the encryption routine
along the length of the encoded block. To decrypt the string, call the function again
with the encrypted string and the same password and stored length value and any
optional Salt value given during encoding.

Notes: If parameter “ExtraSecure” is set to True then an "RC4-like" method of
encryption is used which creates a randomised hash block from the password and
block length. This block is then randomly rotated as the key is XORed into the data
stream. This method although more secure should not be equated with AES or
similar encryption. RC4-like ciphers have been easily cracked. If the block size value
is changed with this value set then the ciphertext cannot be decrypted.

It is vital that the length parameter is passed when calling and be retained by the
calling program. EncryptString creates a binary string which may randomly contain
embedded NULL characters (0x00). C string handling will normally terminate when
a NULL is encountered, thus precise string length handling is required to ensure the
entire string is processed. You may choose to process less than the full length of
the string. If, you make an error handling the length value and supply one which is
too large then EncryptString may corrupt areas of memory which could make your
program unstable or crash.

The password parameter is case-significant. The string is encoded “in-situ” and is
not reallocated in memory; nor does the length of the string expand or contract.
The length parameter may be shorter than the string length, in which case only
“length” bytes of the string will be transcoded. If the length parameter given is
longer than the allocated string then unpredictable results may happen including an
application fault or system lock-up.

In-situ encryption is performed which does not change the length or memory
allocation of the original string. You may call as either a Sub() and, in this case,
ignore the return value or as a Function() and use the return value. Generally use as
a Sub() with no return parameter can be expected to be more efficient and avoid
extra memory-allocation overheads, particularly with very large strings (several
megabytes in size).

You may optionally add a “Salt” value as a string. This is included into the hash
algorithm. Salt values are commonly sent in plaintext with the ciphertext.

Encrypted strings would normally be stored in HEX or Base64 format and
converted using StrToHex or EncodeString64

If you intend to compress encrypted blocks with say ZLIB then you should do this
before calling EncryptString otherwise you will encounter no compression-gain.

Memory: EncryptString performs an in-situ encryption which does not allocate
memory and does not change the length of the encoded data-block. See notes
above about the need to carefully-control the length of the data-block being
encoded or decoded.sss

VBToolbox Documentation 26 March 2011 Page 85 of 158

Example:
Dim s as string
Dim r as string
Dim r As String: s = "Hello world"
Call EncryptString(s, Len(s), "secret",,True)
Debug.Print s
Call EncryptString(s, Len(s), "secret",,True)
Debug.Print s

Result:
"W [u{=g
Hello world

Notes: To properly handle the encrypted string you must keep a track of the full string
length of the original, unencrypted string as the encrypted string may have
embedded NULL characters which cause Len() to return a short value.

The returned string will always be the same length as the supplied plaintext one

regardless of what value Len() shows for the resulting encoded string.

See also: RLE Compression Functions

VBToolbox Documentation 26 March 2011 Page 86 of 158

File and Disk Handling Functions

Function - DiskFree

Declare: Public Declare Function DiskFree Lib "mslib145.dll" (ByVal Drive As String)
As Double
Purpose: Returns the number of free bytes in the specified disk. The drive letter must be the

first letter of the string. Case is not significant. You can specify only the drive letter
if you wish. Uses MSDN API code.

Example: Debug.Print DiskFree("C") ' Prints out 3309388 (bytes)

Functions - DiskFreeMeg and DiskFreeGig

Declares: Public Declare Function DiskFreeMeg Lib "mslib145.dll" (ByVal Drive As String)
As Double
Public Declare Function DiskFreeGig Lib "mslib145.dIl" (ByVal Drive As String)
As Double
Purpose: As for DiskFree - these functions return the number of free Megabytes or

Gigabytes in the specified disk. The drive letter must be the first letter of the string.
Case is not significant. You can specify only the drive letter if you wish. Uses MSDN
API code. | Megabyte here is 1024 x 1024 bytes. | Gigabyte is 1024 x megabytes.
Note that hard-drive manufacturers may choose to specify a megabyte as 1,000,000
bytes.

Example: Debug.Print DiskFreeGig("C") ' Prints out 3.30 (bytes)

Function - DirExists

Declare: Public Declare Function DirExists Lib "mslib145.dIl" (ByVal Filespec As String)
As Boolean
Purpose: Checks to see if a directory exists. The directory attribute is specifically searched-

for. Returns True if found, False if not

Notes: Directories are found regardless of hidden, system or readonly attributes
Any trailing slash is ignored internally. Note that the root directory of a drive always
exists and is equivalent to DriveExists()
Note that paths which omit the root start such as "c:dirname" should be avoided
since they will search for dirname in the current directory, not in c:\

Function - DriveExists

Declare: Public Declare Function DriveExists Lib "mslib145.dIl" (ByVal Filespec As String)
As Boolean
Purpose: Checks to see if a logical rather than a physical disk drive exists. The disk drive may

exist as an entity but may not actually be a valid drive. i.e. it may be a virtual drive
such as a removable MMC card-reader disk which no card inserted. Use
IsValidDisk() to check if the disk is usable/operational.

Returns True if found, False if not

Notes: Checks to see if the drive is valid. Note that CDROMs and disconnected drives may

return "invalid" although, technically they "exist" as physical or "disconnected"
drives. Will not test for the presence of an empty CDROM or DVDROM drive

VBToolbox Documentation 26 March 2011 Page 87 of 158

Function - FileCount

Declare: Public Declare Function FileCount Lib "mslib145.dIl" (ByVal PathSpec As String)
As Long
Purpose: Return a count of the number of matching files in a given directory

Function - FileExists

Declare: Public Declare Function FileExists Lib "mslib145.dIl" (ByVal Filespec As String)
As Boolean
Purpose: Tests to see if a file or filespec given by willdcards exists. Returns a Boolean

(True or False) depending on whether the file or files are found

Exanuﬂes: Debug.Print FileExists ("c:\boot.ini")
Debug.Print FileExists ("c:\temp*.tmp")

Comment: Wildcards are acceptable. A full pathspec is usually required
Directories are not handled by this function, only files

Use FileExists() to test for the presence of any disk drive. (DriveExists())
e.g. FileExists("Q:") returns False if Q: does not exist and True if it does

Function - FileLength

Declare: Public Declare Function FileLength Lib "mslib145.dII" (ByVal FileName As String)
As Long
Purpose: Returns the size of the given file in bytes using the Windows API

See the Visual BASIC FileLen() function

Function - FileNameMatch

Declare: Public Declare Function FileNameMatch Lib "mslib145.dll" (ByVal FileName
As String, ByVal Wildcard As String) As Boolean

Purpose: Match a filename by means of a simple wildcard-string.

The wildcards permitted are the same as those for MS-DOS or a CMD-console but
slightly more flexible. The character "*" will stand for any group of characters. The
wildcard character "!" will stand for any single matching character. Any other are
matched on a case-insensitive basis.

Exanuﬂe: FilenameMatch ("my-project.txt","??-p*.txt") True
FilenameMatch ("winhelp32.exe","w*.exe") True
FilenameMatch ("winhelp32.exe","w*32.exe") True
FilenameMatch ("winamp.dl1l", "*amp.d??") True
FilenameMatch ("nosuch.txt","*amp.d??") False

VBToolbox Documentation 26 March 2011 Page 88 of 158

Function - GetDiskSize

Declare:

Purpose:

Example:

Notes:

Public Declare Function GetDiskSize Lib "mslib145.dIl" (ByVal DiskLetter
As String, Optional ByVal CompensateBy 10K As
Boolean = True) As Currency

Return the size of a disk drive in bytes.

(For a hard-drive "C:" of size 30003503104 bytes)

Debug.Print GetDiskSize("C") ' Colon is not mandatory
Returns: 30003503104 ' True size (integer)

Debug.Print GetDiskSize("C:",False)
Returns: 3000350.3104 ' True size/10,000 - Currency format

Note that this is calculated by the Windows API as an unsigned 64-bit for which
there is no precise equivalent in VB5/6. In order to return an accurate value for
values above 32-bits in size an unsigned __int64 is returned which is interpreted
via the declaration as a Currency data-type. Unfortunately in this case, there is an
inbuilt bias in the Currency data-type which divides any value by 10,000. The declare
automatically compensates for this by multiplying internally by 10,000. If, however,
you are performing math where you have already compensated by this amount you
can disable by specifying CompensateBy | 0K=False.

Function - GetDiskSizeGb

Declare:

Purpose:

Example:

See also:

Public Declare Function GetDiskSizeGb Lib "mslib145.dIl" (ByVal
DiskLetter As String) As Double

Return the size of a disk drive in gigabytes. (Disk size in bytes / (1024*1024*1024))
The value is returned as an decimal value in the form of a Double
You will usually need to use the Round() function to round this value.

(For a hard-drive "C:" of size 30003503104 bytes)

Debug.Print GetDiskSizeGb ("C")
Returns: 27.9429397583008

Debug.Print Round(GetDiskSizeGb("C"), 3)
Returns: 27.943

CommaStr, GetDiskSize

Function - GetDiskSizeMb

Declare:

Purpose:

Example:

Notes:

Public Declare Function GetDiskSizeMb Lib "mslib145.dll" (ByVal
DiskLetter As String) As Long

Return the size of a disk drive in megabytes. (Disk size in bytes / (1024*1024))
The value is returned as an integer value in the form of a Long

(For a hard-drive "C:" of size 30003503104 bytes)

Debug.Print GetDiskSizeMb ("C")
Returns: 28613

For more information see GetDiskSize()

VBToolbox Documentation 26 March 2011 Page 89 of 158

Function - GetDiskType

Declare: Public Declare Function GetDiskType Lib "mslib145.dll" (ByVal DrivelLetter
As String) As Integer

Purpose: Provides a safe-alias for the Win32 API function GetDriveTypeA().
This function is used internally by IsValidDrive(), sSCDROMDrive() et. al.

The following values are returned as a valid or operational disk type:

0 DRIVE_UNKNOWN Unknown drive type

| DRIVE_NO_ROOT_DIR The drive has no valid root directory

2 DRIVE_REMOVABLE Removable type disk (USB/Floppy etc.)
3 DRIVE_FIXED A hard-disk drive

4 DRIVE_REMOT A mapped network drive

5 DRIVE_CDROM Optical media such as DVD or CDROM
6 DRIVE_RAMDISK RAM drive (e.g. ramdrive.sys)

Note that Constants for the above are not defined in the supplied module as you
are expected to use the wrapper-functions - IsHardDisk(), IsSCDROMDisk() etc.

VBToolbox Documentation 26 March 2011 Page 90 of 158

Function - GetVolumeFileSystem

Declare: Public Declare Function GetVolumeFileSystem Lib "mslib145.dll" (_
ByVal RootDirString As String) As String

Purpose: Retrieves the file-system name for a given volume on a physical disk.
E.g. "FAT", "FAT32", "NTFS" etc. Note that the RootDirString parameter must
indicate a root directory "\" for given drive. Full UNC paths are permitted.
The RootDirString parameter need only be an alpha character string e.g. "C"

Example: Debug.Print GetVolumeFileSystem("C:\")

Result: NTFS

Function - GetVolumelLabel

Declare: Public Declare Function GetVolumeLabel Lib "mslib145.dIl" (_
ByVal RootDirString As String) As String

Purpose: Retrieves the file-system label for a given volume on a physical disk
Note that the RootDirString parameter must indicate a root directory "\" for given
drive. Full UNC paths are permitted.
The RootDirString parameter need only be an alpha character string e.g. "C"

Example: Debug.Print GetVolumeLabel ("C:\")

Result: Drive C

Function - GetVolumeNamelLength

Declare: Public Declare Function GetVolumeNameLength Lib "mslib145.dll" (_
ByVal RootDirString As String) As Long

Purpose: Retrieves the file-system maximum filename-length in bytes for a given volume on a
physical disk. Note that the RootDirString parameter must indicate a root directory
"\" for given drive. Full UNC paths are permitted.
The RootDirString parameter need only be an alpha character string e.g. "C"

Example: Debug.Print GetVolumeNameLength ("C:\")

Result: 255

Function - GetVolumeSerial

Declare: Public Declare Function GetVolumeSerial Lib "mslib145.dII" (_
ByVal RootDirString As String) As Long

Purpose: Retrieves the serial number as a VB Long for a given volume on a physical disk
Note that the RootDirString parameter must indicate a root directory "\" for given
drive. Full UNC paths are permitted.

The RootDirString parameter need only be an alpha character string e.g. "C"

Example: Debug.Print Hex$ (GetVolumeSerial ("C:\"))

Result: 3E220629

VBToolbox Documentation 26 March 2011 Page 91 of 158

Function -

Declare:

Purpose:

Function -

Declare:

Purpose:

IsCDROMDisk

Public Declare Function IsCDROMDisk Lib "mslib145.dIl" (ByVal
Driveletter As String) As Boolean

Test to see if a given drive letter is a valid CDROM, CDRW, DVDROM or other
valid (active) optical drive.

Returns True if so otherwise False.

IsHardDisk

Public Declare Function IsHardDisk Lib "mslib145.dIl" (ByVal
DrivelLetter As String) As Boolean

Test to see if a given drive letter is a valid (active) fixed hard-drive.

Returns True if so otherwise False.

Function -

Declare:

Purpose:

Function -

Declare:

Purpose:

Function -

Declare:

Purpose:

IsNetworkDisk

Public Declare Function IsNetworkDisk Lib "mslib145.dIl" (ByVal
Driveletter As String) As Boolean

Test to see if a given drive letter is a valid (active) mapped network drive.

Returns True if so otherwise False.

IsRAMDisk

Public Declare Function IsSRAMDisk Lib "mslib145.dIl" (ByVal
DrivelLetter As String) As Boolean

Test to see if a given drive letter is a valid (active) RAM drive such as that provided
by RAMDRIVE.SYS or RAMDISK.SYS.

Returns True if so otherwise False.

IsReady

Public Declare Function IsReady Lib "mslib145.dIl" (ByVal
DrivelLetter As String) As Boolean

Test to see if a given drive such as a USB or Floppy disk drive is ready to be read.
This not only checks to see if the drive is valid and mapped to an active device but,
where appropriate, whether or not media is inserted.

The Driveletter parameter need only be an alpha character string e.g. "A"

Returns True if so otherwise False.

VBToolbox Documentation 26 March 2011 Page 92 of 158

Function - IsRemovableDisk

Declare: Public Declare Function IsRemovableDisk Lib "mslib145.dIl" (ByVal
Driveletter As String) As Boolean
Purpose: Test to see if a given drive letter is a removable-type drive such as a USB or Floppy
disk drive.

Returns True if so otherwise False.

Function - IsSafeMode
Declare: Public Declare Function IsSafeMode Lib "mslib145.dIl" () As Boolean
Purpose: Returns a Boolean indicating whether Windows is running in "Safe" mode

Returns True if so otherwise False.

Function - IsValidDisk

Declare: Public Declare Function IsValidDisk Lib "mslib145.dIl" (ByVal
DrivelLetter As String) As Boolean

Purpose: Test to see if a given drive letter is a valid (active) disk of any kind.
Similar in function to DriveExists() but differs in that the disk being checked must be
valid, active and available for use rather than an inactive logical drive. Does not
indicate if the drive is ready for reading.

Returns True if so otherwise False.

VBToolbox Documentation 26 March 2011 Page 93 of 158

Function - ListFiles

Declare:

Purpose:

Example:

Notes:

See also:

Public Declare Function ListFiles Lib "mslib145.dIl" (ByVal PathSpec As String, _
Optional ByVal FileSpecs As String, _
Optional ByVal ArrayBase As Integer = 0, _
Optional ByVal IgnoreCase As Boolean = False) As Variant

Create a directory-listing for filenames for a single folder. The result is returned in
a String array as a Variant.

The returned Variant should be checked with the IsEmpty() function to see if any
results were obtained. If successful, and the Variant is not "empty" then Lbound()
should be used to get the lower array index and Ubound() used to get the upper-
array index bounds. Ubound() will also indicate the number of items returned (the
file-count). Unless you specify a value for the optional "ArrayBase" parameter the
array-base will be set to zero regardless of any current Option Base setting in
your program.

You can specify either an inclusive pathspec (with optional, trailing wildcard
filename-specifier) as follows:

V=ListFiles ("x:\some-path\")
V=ListFiles ("c:\program files\google")
V=ListFiles ("x:\some-other-path*.exe")
V=ListFiles ("d:\my-pictures*.jpg")
V=ListFiles ("\temp*.tmp")

You may, additionally, specify a list of further wildcards which will filter, restrict or
narrow-down this search to a group of matching files using a comma-delimited
string. This enables complex searches to be performed. For example if you specify
** in the PathSpec you can limit files of type "* TXT" and "*.LOG". as follows.

V=ListFiles ("x:\some-path\" , "*.txt, *.log")
V=ListFiles ("c:\temp*.*" , "*.tmp, vb*.*, *.log, *.txt, perflib*")

The list of restrictive/qualifying filespecs must be comma or space-delimited.
If you omit "**" and the path exists then it will be added automatically.

The returned array of files contains a list of filenames-only and does not include any
path information. Case is not significant for filenames or searches and is ignored on
Windows operating systems.

Dim v as Variant
Dim i as Integer ' You can specify "Long" also
v=ListFiles ("c:\photos\","*.Jjpg, *.jpeg, *.png, *.gif, *.bmp")
If IsArray(v) then

For i=LBound(v) to Ubound (v)

Debug.Print "File "; i; " is ["; v(i); "I1"

Next

EndIf

Recursion is not supported internally by this function although it could be used
to construct a recursive function with. Bear in mind that both recursion and

directory listing are CPU and memory-intensive.

GetArrayDimensions

VBToolbox Documentation 26 March 2011 Page 94 of 158

Function - MKDirs

Declare:

Purpose:

Notes:

Example:

Result:

See also:

Public Declare Function MKDirs Lib "mslib145.dll" (ByVal Path As String) _
As Integer

Creates a directory or series of subdirectories in one operation

The VB "MKDir" function can only create one directory-segment at a time.
This function will create an entire chain of subdirectories in one operation

The return value indicates the number of directory segments actually created (not
the number of segments present). One or more of the left-most directory
segments may already exist.

The path must be specified from the directory root. Either by using a backslash or

by also specifying a drive prefix.

' Only c:\temp already exists
MKDirs "c:\temp\one\two\three\four"

MKTempName

VBToolbox Documentation 26 March 2011 Page 95 of 158

Function - MKTempName

Declare: Public Declare Function MKTempName Lib "mslib145.dll" (_

Optional ByVal Path As String =

Optional ByVal FileType As String =_".tmp", _

Optional ByVal Length As Integer = 8

y

Optional ByVal Style As Integer = RandomStringAll) As String

Purpose: Creates a temporary filename randomly according to the details given

Description: The given path must be valid and is checked for existence against the live file system
Any drive letter specified in the path must be valid. The length parameter can be any
value up to the system maximum minus the length of the path segment and postfix

Notes:

Example:

Result:

Example:

Result:

filetype (if any).

If the Path parameter is omitted or is empty then the current TEMP or TMP
environment value will be used instead.

If the FileType parameter is omitted or is empty then ".TMP" will be used

If the path is invalid and does not exist and the TEMP or TMP value cannot be
retrieved then an empty string is returned.

The Path and FileType parameters are optional for the Declare/ANSI version
The Path and FileType parameters are mandatory for the TLB/Unicode version

The "Style" parameter must be a parameter from RandomStr() as follows:
The filename is guaranteed to be unique and not currently exist.

Public Const RandomStringMixedCase = 0
Public Const RandomStringLower =
Public Const RandomStringUpper =
Public Const RandomStringNumeric
Public Const RandomStringAll = 4
Public Const RandomStringHex = 6

[

' Use the default system TEMP variable (no path given)

Debug.Print MKTempName ("", "tmp", 8, RandomStringAll) ' Unicode/TLB
Debug.Print MKTempName ' ANSI/Declare

c:\Temp\3LWIQI1KS5. tmp

' Use an explicit path

Debug.Print MKTempName ("c:\apps\", "$$$", 12, RandomStringNumeric)

c:\apps\650241428568.5$$

VBToolbox Documentation 26 March 2011 Page 96 of 158

Function - ReadFileToString

Declare: Public Declare Function ReadFileToString Lib "mslib 145.dII" (_

ByVal Filename As String, Optional ByVal Bytes As Long = 0, _

Optional ByRef ErrCode As Integer = 0) As String

Purpose: Reads a file into a a single buffer String.

Description: Primitive checks are made on the buffer before the file is read in.

Notes: Orriginally named ReadFile it has been renamed to avoid a possible clash with the

Windows API function of the same name.

Memory is allocated using the Windows API

You may parse the file into multiple lines or a String() array using StrSplit as follows:

StrSplit(ReadFile ToString("C:\boot.ini"),vbCrlf)

The ErrCode parameter is optional and may be ignored

Returns:
Code |Description
0 No error (success)
I No filename specified (empty)
2 File was not found
3 Can't open the specified file
4 Can't allocate required memory
Example: PrintR (StrSplit (ReadFileToString ("c:\boot.ini"),vbCrlf))
ByVal:Array Variant->String(6)
(
[0] => "[boot loader]"
[1] => "timeout=3"
[2] => "default=multi (0)disk(0)rdisk(0)partition (2) \WINDOWS"
[3] => "[operating systems]"
[4] => "multi(0)disk(0)rdisk(0)partition(2) \WINDOWS="Mic...
(5] => mn
)
See also: PrintR, StrSplit

VBToolbox Documentation

26 March 201 |

Page 97 of 158

Function - Unlink

Declare: Public Declare Function Unlink Lib "mslib145.dll" (ByVal Filename As String)
As Long
Purpose: Replacement for the VB Kill <filename> command

Description: Provides a more functional substitute for Kill <filename>. Where it is essential to
have more complete control over whether or not the file was removed and if not
then know the reasons why then calling the "C" library "unlink()" function is offered

here.
Returns:
Return Value |Description Win32 API Error code
2 File Not found ERROR_FILE_NOT_FOUND
32 File locked ERROR_SHARING_VIOLATION
123 Invalid filename ERROR_INVALID_NAME
See also: WipeFile

Function - WipeFile

Declare: Public Declare Function WipeFile Lib "mslib145.dIlI" (ByVal Filename As String,
Optional ExtraSecure As Boolean = True) As Integer

Purpose: Securely wipes (erases) a given file by overwriting the file with random data.

Returns: On success WipeFile returns 0. On failure a non-zero value indicating the problem

is returned. This enables your program to take further action as necessary. The
return values from WipeFile are as follows:

Return Value Indicates

0 Success

I Invalid filename argument

2 File not found
3 Can't open for Wiping (file may be locked)
4 Can't unlink() (delete) the file
Notes: By default only up to the first 100Kb of a file are "scrubbed". If the ExtraSecure

option is used then the whole file is scrubbed. Care should be taken as this may
take a long time on large files.

WipeFile is useful for clearing temporary files which have been used for encryption
etc.

See also: Unlink

VBToolbox Documentation 26 March 2011 Page 98 of 158

Internet and Network Related Functions

Function - GetCGIArgs

Declare: Public Declare Function GetCGIlArgs Lib "mslib145.dIl" (ByVal
s As String, v As Variant) As Integer

Purpose: Parse and break-up a CGI query-string passed via the server environment variable
"QUERY_STRING".

Description: The value read for QUERY_STRING is passed as the first argument and an empty
Variant as the second argument. The function returns the number of arguments
found via the body and the variant returns a string-array of split argument pairs in
the form "X=Y". The function IsEmpty() should be always used to test the returned
Variant before use.

Example:
Dim V as Variant
Dim S as String
Dim I as Integer
S:Environ("QUERY_STRING")
If S<>"" Then
I=GetCGIArgs(S,V)
Debug.Print "Returned "; 1
If IsArray (V) Then
For i=LBound (V) To Ubound (V)
Debug.Print "Value ";

" arguments"

A A A ACD P
Next
Endif
Endif

For a QUERY_STRING value "A=1&B=2&C=3" the code above prints out:

Returned 3 arguments
Value 1 =[A=1]
Value 2 =[B=2]
Value 3 =[C=3]

Notes: You may need to use URLDecode() to decode any encoded characters within the
string. The delimiter characters, "?" and "&" are reserved and should not be
encoded. If these characters are encoded within the string you intend to process
then this should be decoded before calling GetCGlArgs()

Function - IPToLong

Declare: Public Declare Function IPToLong Lib "mslib145.dll" (ByVal IP As String)

As Double
Purpose: Performs a text conversion to the equivalent of an "C" unsigned long value.
Notes: The unsigned product cannot be represented in VB by a signed long so the return

is held as a double. Bear in mind that doubles are returned in the range of a "C"
unsigned long - 0x00 to OxFFFFFFF. The function needs to handle addresses from
0.0.0.0 to 255.255.255.255 (FF.FF.FF.FF) (0..+4294967295)

Examples: IPToLong ("192.168.2.1")
Result: 3232236033
See also: LongTolP

VBToolbox Documentation 26 March 2011 Page 99 of 158

Function - IPMatch

Declare:

Purpose:

Examples:

Comment:

See also:

Public Declare Function IPMatch Lib "mslib145.dII" (ByVal Mask As String, ByVal IP
As String) As Boolean

Matches the given IP address string to an IP "mask" string. The mask string may
contain either an exact IP address or wildcards in the form of * or ? where * stands
for any octet value of | to 3 digits which may exist and ? any individual octet digit
which must exist. Partial masks are permitted as are mixtures of * and ? with
numeric values.

For example 192.*%** will match all addresses starting with 192. whereas 192.22.%*
will match only addresses starting with 192 followed by a 2nd octet with precisely
two digits.

IPMatch ("192.* % *" "192.2.8.1") returns True
IPMatch ("192.2?2.*.*","192.2.8.1") returns False
IPMatch ("192.272.*%.*","192.23.8.1") returns True
IPMatch("192.","192.2.8.1") returns True
IPMatch ("*.* * *" "192.2.8.1") returns True
IPMatch ("*","192.2.8.1") returns True
IPMatch("???2.2.2.2","192.2.8.1") returns True
IPMatch ("??2?2.2?2.2.?2","192.2.8.1") returns True

IPMatch("???2.2.2.2","192.2.8.1") returns True
IPMatch ("*.2.?2.2","192.2.8.1") returns True
IPMatch("*.2.2.2","192.2.8.1") returns False

Partial-matching or partial wildcards are effective reading from left to right

MatchCIDR

Function - LongTolP

Declare:

Purpose:

Example:

Comment:

See also:

Public Declare Function LongTolP Lib "mslib145.dll" (ByVal IP As Double)
As String

Converts a four-byte unsigned long value passed in VB as a double - such as the
result of IPToLong(). This will be in the range 0x00 to OxFFFFFFFF (0..4294967295)

LongToIP (IPToLong("192.168.2.1")) - Returns "192.168.2.1"
Bear in mind that doubles are required as the full IP-range will result in a negative
signed long integer value when held in a VB signed long.

Partial IP address strings such as "192." are accepted (equates to "192.0.0.0")

IPToLong

VBToolbox Documentation 26 March 2011 Page 100 of 158

Function - MapNetworkDrive

Declare: Public Declare Function MapNetworkDrive Lib "mslib145.dIl" (_
ByVal ServerPath As String, _
ByVal Driveletter As String, _
ByVal UserName As String, _
ByVal Password As String, _
ByRef ErrorCode As Long, _
Optional ByVal Persistent As Boolean = False, _
Optional OfferPromptForLogin As Boolean = False) As Boolean

Purpose: Connect a specific drive-letter to a shared network drive on a Microsoft or
fully-Microsoft-compatible file server. Bear in mind that the process can be fairly
complex and issues such as locked-accounts, credential conflict or non-existent
resources need to be handled by the programmer calling these routines. It is
recommended that the return code passed by-reference as the variable
"ErrorCode" is checked and return values are appropriately handled.

Example:
Dim ServerPath as String
Dim UserName as String
Dim Password as String
Dim ErrorCode as Long
ServerPath="\\Comet\drive-c\docs" ' Server name is \\Comet
UserName="Admin"
Password="secret"
If (MapNetworkDrive (ServerPath,"Q:",UserName, Password, ErrorCode) Then
Debug.Print "Connected successfully"
Else
Debug.Print "Failed to connect - return code was "; ErrorCode
EndIf
Notes: The servername should include prefix of "\\" e.g. "\\servername"
The server path should include the shared resource and may also include a sub-
folder of that resource. Persistent connections can be specified if you wish by
setting "Persistent" to True. These will persist within the user's profile into the next
login-session. If desired Windows can be requested to ask for the user-credentials
by setting "OfferPromptForLogin" to True
Potential problems will arise due to many errors including, but not limited to, the
following examples:
Code |Reason
86 Wrong password
1219 Credential conflicts (already connected as a different user)
1909 Account is intruder-locked due to a bad-password
See also: MapNextFreeNetworkDrive, UnMapNetworkDrive

VBToolbox Documentation 26 March 2011 Page 101 of 158

Function - MapNextFreeNetworkDrive

Declare:

Purpose:

Example:

Notes:

See also:

Public Declare Function MapNextFreeNetworkDrive Lib "mslib[45.dIl"
(ByVal ServerPath As String, _
ByVal UserName As String, _
ByVal Password As String, _
ByRef ErrorCode As Long, _
Optional ByVal Persistent As Boolean = False, _
Optional ByVal OfferPromptForLogin As Boolean = False) As String

Connect the next available local drive letter to a shared network folder on a
Microsoft or fully-Microsoft-compatible file server. Bear in mind that the process
can be fairly complex. Issues such as locked-accounts, credential conflict or non-
existent resources need to be handled by the programmer calling these routines. It
is recommended that the return code passed by-reference as the variable
"ErrorCode" is checked and return values are appropriately handled.

Dim ServerPath as String
Dim UserName as String
Dim Password as String
Dim ErrorCode as Long
Dim D as String
ServerPath="\\Comet\drive-c\docs" ' Server name is Comet
UserName="Admin"
Password="secret"
D=1
D=MapNextFreeNetworkDrive (ServerPath,UserName, Password, ErrorCode)
If D<>"" Then
Debug.Print "Connected successfully to drive "; D
Else
Debug.Print "Failed to connect - return code was "; ErrorCode
EndIf

The server name should be specified with a double-backslash prefix "\\" - e.g.
"\servername".

The server path should include the shared resource by name and may also include a
sub-folder of that same resource. Shared resources which are hidden from being
browsed by being named with a terminating dollar sign.

Persistent connections can be specified if you wish by setting "Persistent” to True.
These will persist within the user's profile into the next login-session.

If desired Windows can be requested to ask for the user-credentials by setting
"OfferPromptForLogin" to True

Potential problems will arise due to many errors including, but not limited to, the
following examples:

Code Reason

86 Wrong password

1219 Credential conflicts (already connected as a different user)
1909 Account is intruder-locked due to a bad-password

MapNetworkDrive, UnmapNetworkDrive

VBToolbox Documentation 26 March 2011 Page 102 of 158

Function - UnmapNetworkDrive

Declare:

Purpose:

See also:

Public Declare Function UnmapNetworkDrive Lib "mslib[45.dIl"
(ByVal Driveletter As String, _
Optional ByVal Persistent As Boolean = False, _
Optional ByVal Forcelt As Boolean = False) As Long

Disconnect a mapped network drive connected by MapNetworkDrive or
MapNextFreeNetworkDrive. Windows may refuse to disconnect the drive if there
are currently open files or network-searches pending. This may be overridden by
setting "Forcelt" to True. If Persistent is set to True any changes will be reflected in
the user-profile.

MapNetworkDrive, MapNextFreeNetworkDrive

Function - MatchCIDR

Declare:

Purpose:

Examples:

Comment:

See also:

Public Declare Function MatchCIDR Lib "mslib145.dII" (ByVal Mask As String,
ByVal IP As String) As Boolean

A form of wildcard IP matching against a given IP mask. Often used for routing and
IP-access filtering. Matches the given IP address against a CIDR mask and returns
whether the match is made or not as a boolean (true or false). The mask must
specify a bit value from | to 32 after the slash character which gives the number of
"mask" bits to match to the IP address (reading from left to right).

MatchCIDR("192.168.0.0/16","192.168.2.12") ' Match 16 CIDR bits
Returns True
MatchCIDR("192.168.0.0/24","192.168.2.12") ' Match 24 CIDR bits
Returns False

The "mask” string must be in the format <ip-address>/<bitmask-value> with a
separating forward-slash. The bitmask value must range from | to 32.

The function returns False on all errors. The caller must provide extended error-
trapping and detection.

CIDR is an acronym for Classless Inter Domain Routing

(See http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing)

IPMatch

VBToolbox Documentation 26 March 2011 Page 103 of 158

Function - URLEncode

Declare:

Purpose:

See also:

Public Declare Function URLEncode Lib "mslib145.dIl" (ByVal s As String)
As String

Encodes a URL by encoding non-permitted characters as %xx trigraphs
This transformation is required on URLs submitted to webservers

URLDecode

Function - URLDecode

Declare:

Purpose:

Notes:

Important:

See also:

Public Declare Function URLDecode Lib "mslib145.dll" (ByVal s As String)
As String

Decodes a URL which has been encoded by converting non-permitted characters to
%xx trigraphs. This transformation is required on URLs which have been
submitted to webservers and which are, for example, being processed by CGl
applications which receive the encoded URL

URLs and query strings which are retrieved from a server environment table will
almost always need to be transformed back into plain ASCII/ANSI text before their
contents can be properly handled by any back-end application.

You should call ArgVal before calling URLDecode on any CGI query string.

The reason for this is that the ampersand character (&) is used to delimit the query
string and is therefore used to "tokenise" or split the string into an array. When
the ampersand is used in text the character is encoded as %26 by the browser or
web server. You should call URLDecode only after the array has been split
otherwise the character will be wrongly interpreted as a delimiter character.

ArgVal, URLEncode

VBToolbox Documentation 26 March 2011 Page 104 of 158

Console Functions

No guarantee is given that these functions will work reliably on older versions of Windows although
the console features have been found to work well on Windows NT4 (SP6a), Windows 2000 (SP3+)
and XP (SP2+). Development is focused on supporting the entire Windows NT family where
possible.

Sub - ClearConsoleAttributes

Declare: Public Declare Sub ClearConsoleAttributes Lib "mslib145" () Lib "mslib145" ()

Purpose: Resets console attributes set by SetConsoleAttributes back to the default.
The default value is grey text on a black background

See also: SetConsoleAttributes

Sub - CloseConsole
Declare: Public Declare Sub CloseConsole Lib "mslib145" ()
Purpose: Closes a console window opened by OpenConsole. No value is returned

Any pending input is lost. You should always call CloseConsole to close any console
you have opened.

See also: OpenConsole

Sub - CIs

Declare: Public Declare Sub Cls Lib "mslib145" ()

Purpose: Clears the contents of a console window opened by OpenConsole.

No value is returned

Function - ConsoleOpen
Declare: Public Declare Function ConsoleOpen Lib "mslib145" () As Integer

Purpose: Returns True if the console was opened successfully and the handle to stdout
successfully retrieved. Returns False once the console is closed.

Comments May be called at any time, but retrieving the handle from OpenConsole() is
a preferable means of detection

See also: CloseConsole, OpenConsole

Function - ConsoleTitle
Declare: Public Declare Function ConsoleTitle Lib "mslib145" (ByVal s As String) As Long
Purpose: Sets the title of a console window which has been opened by

OpenConsole. If no console is open yet then no output or error is generated. A

string value is returned (which may be null or empty on failure)

See also: CloseConsole, OpenConsole

VBToolbox Documentation 26 March 2011 Page 105 of 158

Function - ExitProgram

Declare: Public Declare Sub ExitProgram Lib "mslib145.dII" (ExitCode As Long)

Purpose: Exits the program back to the console and has the effect of an End statement but
allows an ErrorLevel value to be returned to the Console Command Processor
(CCP)

Notes: Should be used only for console-mode applications

Function - FlushConsole

Declare: Public Declare Function FlushConsole Lib "mslib145" () As Long

Purpose: Forces buffered console output issued by WriteLn or Writes to be flushed out
to the console window. May be necessary to prevent "out-of-order" sequencing of
console output. Equivalent to the "C" console I/O fflush() function but implemented

using the Win32 API.

See also: CloseConsole, OpenConsole, WriteLn, Writes

Function - GetConsoleHandle

Declare: Public Declare Function GetConsoleHandle Lib "mslib145.dIl" () As Long

Purpose: Retrieves the handle of an open console window for use with other Win32 API
functions. This function returns the API result of GetActiveWindow() called a the

time the console window was created with OpenConsole()

See also: ConsoleOpen, OpenConsole

Function - GetConsoleTitle

Declare: Public Declare Function GetConsoleTitle Lib "mslib 45" Alias _
"getConsoleTitle" () As String

Purpose: Retrieves the title of a VBToolbox console window

See also: ConsoleOpen, OpenConsole

Sub - GotoXY

Declare: Public Declare Sub GotoXY Lib "mslib145" (ByVal x As Integer, ByVal y As Integer)
Purpose: Locates the cursor of an open console window at a particular X/Y coordinate
Notes: The console coordinates are "base |". i.e. they start in the top L/H corner at |,I
See also: WhereX, WhereY

VBToolbox Documentation 26 March 2011 Page 106 of 158

Function - InKey
Declare: Public Declare Function InKey Lib "mslib145" () As Integer

Purpose: Checks to see if a keypress event is ready and if so returns the ASCII| key-code of
the keyboard character. Useful for monitoring loops awaiting a keypress

Example:
Dim k as integer
k=0
while k=0 ' Loop until a key is pressed
k=InKey ()
'Do stuff here
Wend
See also: ReadlLn

Function - InNativeConsole
Declare: Public Declare Function InNativeConsole Lib "mslib145" () As Boolean

Purpose: Returns true if the program is running as a native (converted) console application
Returns false if unconverted and "as compiled" from VB

Comments This can be used as a means of checking if the program has been converted using
LINK/EDITBIN into a native console app.

See also: OpenConsole

Function - IsCursorVisible

Declare: Public Declare Function IsCursorVisible Lib "mslib145.dll" () As Boolean
Purpose: Returns true if the cursor of an open VBToolbox console session is visible
See also: SetCursorVisible

VBToolbox Documentation 26 March 2011 Page 107 of 158

Function - OpenConsole

Declare:

Purpose:

Notes:

Example:

See also:

Public Declare Function OpenConsole Lib "mslib145" () As Long

Opens a new console window and returns the handle to it if successful and 0 if not.
Only one console window can be opened and all output will be sent to that
window. Use WriteLn and ReadLn to read and write to this window.

You should always call CloseConsole to close any console you have opened.

The long-standing problem of VB5 is of not being able to write to the

current console using handle StdOut. Since VB is a Windows rather than a console
application, n order to get a known handle from it's own window it must create it's
own console window instance. Opening a new console for writing works fine for
Webserver-based CGl processing and is exactly what would happen if you ran a
console executable (EXE) from Windows Explorer.

OpenConsole() returns a Windows handle to the stdout stream if successful
This value can be stored and used to send output to stdout (the console) using
other methods if desired.

On failure, INVALID_HANDLE_VALUE (-I. Oxffffffff) is returned

When an VB End statement is encountered the console is closed to output from
VBToolbox and handles are released although any physical console window being
written to will remain open until a CloseConsole command is issued. It will not be
possible to write to any open console window once the End command has been
met until another OpenConsole command is issued.

OpenConsole ' If the EXE has not been relinked then

' a new console window will Dbe spawned
WriteLn "Hello World" ' Writes the string followed by a CRLF
End ' Issue a GOTO Restart from the immediate
Restart: ' pane to resume output
WriteLn "Still there?" ' Has no effect (window remains open)
OpenConsole ' Console reopened for output
WriteLn "Back again" ' Output is now possible again

CloseConsole, ConsoleOpen, InNativeConsole

Sub - Pause

Declare:

Purpose:

See also:

Public Declare Sub Pause Lib "mslib 145"
(Optional ByVal s As String = "Press a key...")

Prints a message then waits for keyboard input.
The default message is "Press a key ..."

InKey, ReadLn

VBToolbox Documentation 26 March 2011 Page 108 of 158

Function - ReadlLn

Declare: Public Declare Function ReadLn Lib "mslib145" (ByVal | As Long) As String

Purpose: Reads up to "I"characters from a console window which has been opened by
OpenConsole. If no console is open yet then no output or error is generated. A

string value is returned (which may be null or empty on failure)

See also: InKey, Pause

Sub - SetConsoleAttributes

Declare: Public Declare Sub SetConsoleAttributes Lib "mslib145" (ByVal Foreground
As Integer, ByVal Background As Integer)

Purpose: Sets the text-attributes for a currently open console window.
Attributes should be set before sending text to the console
Use the supplied "C"-style colour constants to specify which colour
See the defined colour constants at the end of this section

See also: ClearConsoleAttrbutes

Sub - SetCursorVisible

Declare: Public Declare Sub SetCursorVisible Lib "mslib145.dll" (ByVal State As Boolean)
Purpose: Toggles the state of cursor visibility in an open VBToolbox console

session
See also: IsCursorVisible

Function - WhereX
Declare: Public Declare Function WhereX Lib "mslib145" () As Integer

Purpose: Returns the X (horizontal) location of the cursor in an open console window
The location can be set using GotoXY()

See also: GotoXY

Function - WhereY
Declare: Public Declare Function WhereY Lib "mslib145" () As Integer

Purpose: Returns the Y (vertical) location of the cursor in an open console window
The location can be set using GotoXY()

See also: GotoXY

VBToolbox Documentation 26 March 2011 Page 109 of 158

Function - WritelLn

Declare:

Purpose:

See also:

Public Declare Function WriteLn Lib "mslib 145" (ByVal s As String) As Long

(Write-Line) Writes a text string out to a console window which has been opened
by OpenConsole. If no console is open yet then no output or error is generated.
WritelLn always appends a carriage-return (CRLF pair) and does not accept
formatting. Use Format$() to format the output string.

WriteLn can be used with no parameters to issue a newline

The number of characters successfully written is returned.

FlushConsole, OpenConsole, ReadLn, Writes

Function - Writes

Declare:

Purpose:

See also:

Public Declare Function Writes Lib "mslib145" (ByVal s As String) As Long

(Write String) Writes a text string out to a console window which has been opened
by OpenConsole. If no console is open yet then no output or error is generated.
Writes does NOT append a carriage-return (CRLF pair)

The number of characters successfully written is returned.

FlushConsole, OpenConsole, ReadLn, WriteLn

VBToolbox Documentation 26 March 2011 Page 110 of 158

Console Colour Constants

The following "C"-style constants are defined for use with SetConsoleAttributes() in the ANSI version
of the library. Note that the names of these differ in the TLB/Unicode version where preset constants

are provided. The TLB/Unicode version also offers dual English and American spelling.

I
o

Public Const BACKGROUND BLACK =
Public Const FOREGROUND BLACK = 0
Public Const FOREGROUND BLUE = 1
Public Const FOREGROUND GREEN = 2
Public Const FOREGROUND CYAN = 3
Public Const FOREGROUND RED = 4
Public Const FOREGROUND MAGENTA = 5
Public Const FOREGROUND_ YELLOW = 6
Public Const FOREGROUND GRAY = 7
Public Const FOREGROUND GREY = 7

Public Const FOREGROUND_ INTENSITY = 8

' American spelling
' English (correct) spelling
' Intensify the text colour

Public Const FOREGROUND LIGHTBLUE = 1 Or FOREGROUND INTENSITY

Public Const FOREGROUND LIGHTGREEN =

2 Or FOREGROUND INTENSITY

Public Const FOREGROUND LIGHTCYAN = 3 Or FOREGROUND INTENSITY

Public Const FOREGROUND LIGHTRED = 4
Public Const FOREGROUND LIGHTMAGENTA

Public Const FOREGROUND LIGHTYELLOW = =
Public Const FOREGROUND WHITE = FOREGROUND GREY Or FOREGROUND INTENSITY

Public Const BACKGROUND BLUE = 16
Public Const BACKGROUND GREEN = 32
Public Const BACKGROUND CYAN = 48
Public Const BACKGROUND RED = 64
Public Const BACKGROUND_MAGENTA = 80
Public Const BACKGROUND YELLOW = 96 '
Public Const BACKGROUND GRAY = 112
Public Const BACKGROUND GREY = 112

Or FOREGROUND INTENSITY
= 5 Or FOREGROUND_INTENSITY
6 Or FOREGROUND INTENSITY

Mustard

Public Const BACKGROUND INTENSITY = 128

Public Const BACKGROUND WHITE = BACKGROUND GRAY Or BACKGROUND INTENSITY

See also: SetConsoleAttributes

VBToolbox Documentation

26 March 201 |

Page 1l of 158

Native Console App Conversion (EXE Conversion)

There is a simple modification you can optionally make to your compiled VB executable (EXE) file
which will turn it into a full and native Win32 console application. One which does not open a new
console window and which will interact normally with a standard command prompt and, for example,
redirect or pipe it's output into a file.

The console functions of VBToolbox work just fine with such converted programs and need no
special programming or changes. Just compile and do the following to your exe file. If run from
Windows Explorer your program will open it's own console window otherwise it will reuse the
existing one automatically.

Download Microsoft's linker program, LINK.EXE v5.12.8078 and associated EDTIBIN.EXE v5.12.8078.
The best place | have found is to download it with MASM32 a freeware Macro-Assembler from
http://www.masm32.com/.

First, note and accept the licence conditions and then install MASM32 to a folder on your hard drive.
(You may also need to temporarily disable DEP (Data Execution Prevention) for the install to
complete successfully). The version of LINK/EDITBIN bundled with VB5 (v4.20) won't work and
oddly, nor will some higher versions such as v7.10 (MSVC++ 2008 Express edition). On incompatible
versions the command gives warning LNK4044: unrecognised option "EDIT"; ignored;

This method of conversion has been tested with VBToolbox console code on Windows XP, Windows 2000 and
Windows NT 4.0 (SPé6a)

® Once you have installed MASM32 ...
® Compile your VB program which links to VBToolbox's console features.
Ensure you have "Compile to native code" enabled in your Project options under

Project->Properties->Compile Tab->"Compile to Native Code"

® Open a CMD prompt and change directory to the one which holds LINK and EDITBIN
v5.12.8078 (should be in C:\MASM32\BIN\)

® Run the following command to convert your compiled EXE -
LINK.EXE /EDIT /SUBSYSTEM:CONSOLE <filename>

For example: for the vbcgi project, compile then run -
LINK.EXE /EDIT /SUBSYSTEM:CONSOLE vbcgi.exe

Alternatively, you can call EDITBIN.EXE directly using
EDITBIN.EXE /SUBSYSTEM:CONSOLE <filename>

® You will see the following displayed on successful conversion (no detailed confirmation
message)

Microsoft (R) COFF Binary File Editor Version 5.12.8078
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

® That's it. You can now test-run your EXE from a CMD window

VBToolbox Documentation 26 March 2011 Page 112 of 158

Windows API-Related Functions

Includes some general file-handling functions which are not part of the Win32 API set.

Function - AddEventSource

Declare:

Purpose:
Example:

Notes:

See also:

Public Declare Function AddEventSource Lib "mslib145.dll" (ByVal AppName
As String, Optional ByVal CategoryCount As Integer = 0) As Boolean

Registers your application in the registry as a source of system event-log messages
Debug.Print "AddEventSource="; AddEventSource ("VBToolbox")

You MUST NOT UPX or otherwise re-compress this DLL if you intend to use the
logging functions. Although supplied UPX-compressed the DLL has to have very
specific sections of the resource-table excluded.

You can use any name for "AppName" as long as it remains constant throughout the
life of your application. Remove or "de-register" your application as a source of
messages using RemoveEventSource(). You can still log events even when not
registered or after you have de-registered your application. Your event messages
will be prefixed with an informational warning by Windows to the effect that the
message template could not be found.

The category-count should currently be omitted set to 0 (default) but the normal
value would be 7. This is a bit-mapped value which ORs together values for each

category (0x01, 0x02, 0x04). Currently categories are not fully-supported.

EventSource, RemoveEventSource, LogEvent

Function - AddTrailingSlash

Declare:

Purpose:

Examples:

See also:

Public Declare Function AddTrailingSlash Lib "mslib[45.dIl" (ByVal FileName
As String) As String

Intelligently adds a trailing slash character ("\") to the end of a filename/path value
This helps when you need to concatenate a filename onto the end of a path value
and you would otherwise risk ending up with multiple backslash characters without
a lot of checking. e.g. "c:\dir\" + "\" + "file.typ" might end up as "c:\dir\\file.typ".

No dynamic tests are made to distinguish between files or folders. The calling
routine should test to see if a slash is being appended to the end of whichever type.
For example: "c:\fred" - is this a file or a folder? The function will assume it is a
folder and will append a slash character.

Use GetNormalisedPath() to normalise, check and correct partial or ambiguous
paths.

c: returns c:
"c:\" returns "c:\"
"c:\fred" returns "c:\fred\"
"c" returns "c\"

"" returns

"q:\\" returns "g:\\" (incorrect values are not corrected)

FileType

VBToolbox Documentation 26 March 2011 Page 113 of 158

Function - CanRedo

Declare:

Purpose:

See also:

Public Declare Function CanRedo Lib "mslib145.dll" (ByVal hWnd As Long) _
As Boolean

Returns a Boolean indicating whether a Win32 APl "Redo" action can be performed
using a EM_REDO SendMessage API call

CanUndo

Function - CanUndo

Declare:

Purpose:

See also:

Public Declare Function CanUndo Lib "mslib145.dll" (ByVal hWnd As Long)
As Boolean

Returns a Boolean indicating whether a Win32 APl "Undo" action can be performed
using a EM_UNDO SendMessage API call

CanRedo

Function - CreateGUID

Declare:

Purpose:

Example:

Public Declare Function CreateGUID Lib "mslib145.dIl" (Optional
ByVal Formatted As Boolean = True) As String

Creates a 128-bit/16-byte/32 or 36-character Globally-Unique-ldentifier (GUID)
string in either plain-hex format or standard formatted format. A GUID has a very
low-probability of ever being repeated and should never be repeated on the same
machine as it is based around unique hardware signatures such as the unique
network-card MAC address.

Debug.Print CreateGUID () ' Default (True) is Windows-formatted
Debug.Print CreateGUID(false) ' Unformatted

Prints out:

"72b0£5dc-8£7d-4817-AD00-722B1CEDGE9B" (36 character string)
"d9f2832a7c114112967746717310C296" (32 character string)

VBToolbox Documentation 26 March 2011 Page |14 of 158

Function - FileType

Declare: Public Declare Function FileType Lib "mslib145.dIlI" (ByVal FileName As String)
As String
Purpose: Returns the filetype part of a filename or filename/path.

This does not need to be in DOS 8.3 format. The filetype can be any length up to
the Windows maximum path value

See also: AddTrailingSlash

Function - GetAppFileName

Declare: Public Declare Function GetAppFileName Lib "mslib145.dIl" (Optional
ByVal Handle as Long=0&) As String

Purpose: Retrieves the fully-qualified path name and filename of the current EXE program
or a specified process by it's handle. This mirrors the functionality of App.Path in
Visual BASIC for those not using VB to call VBToolbox.

Notes: This enables the launched program's precise location on disk to be determined
Example: Debug.Print "GetAppFileName="; GetAppFileName ()

Result: GetAppFileName=c:\apps\myprogram\myprogram.exe"

See also: GetDLLFileName

Function - GetCurrentDir

Declare: Public Declare Function GetCurrentDir Lib "mslib145.dIl" () As String
Purpose: Retrieves the current working-directory
See also: SetCurrentDir

Function - GetDLLFileName
Declare: Public Declare Function GetDLLFileName Lib "mslib[45.dII" () As String

Purpose: Retrieves the fully-qualified path name and filename of the current loaded DLL
which is linked to your application.

Example: Debug.Print "GetDLLFileName="; GetDLLFileName ()
Result: GetDLLFileName=c:\windows\ms1lib145.d11"
See also: GetAppFileName

VBToolbox Documentation 26 March 2011 Page 115 of 158

Function - GetError

Declare:
Purpose:

Notes:

Public Declare Function GetError Lib "mslib145.dIl" () As Long
Wrapper for Win32 API GetLastError function. Included for TLB use

GetError (GetlastError) returns the Windows error code which may be useful to
reveal more information about an error or failure in an API call.

You can find the Windows System Error Codes here:
http://msdn.microsoft.com/en-us/library/ms681382(VS.85).aspx

Function - GetNormalisedPath

Declare:

Purpose:

Example:

Public Declare Function GetNormalisedPath Lib "mslib145.dIl"
(ByVal Path As String) As String

Returns a corrected or "canonicalised" path from a partial or relative path

For example - inputting "\" will return "c:\", and "." will return the full, current
directory including drive-letter. Note that Win32 API functions don't normally
terminate folder/path strings with a backslash character other than for "root".

"c:" returns the current directory ("c:\vc5\myprojects\this-dll")
"\" returns "c:\"
"\temp" returns "c:\temp"

Function - GetOpenfFile

Declare:

Purpose:

Notes:

See also:

Public Declare Function GetOpenFile Lib "mslib145.dIl" (ByVal hWnd As Any,
ByVal Filter As String, ByVal Title As String, ByVal InitDir As String,
ByVal Flags As Integer) As String

Provide an Open File dialog equivalent to that provided by the Visual BASIC
Common Dialog OCX control. This used pure Win32 APl and does not require any
control to be installed or distributed with the program.

The Window handle (hWnd) may be specified as NULL (use 0&). However, if you
do this then the Open File dialog won't be "bound" to your application and will not
be "application modal" either. If you close your app then it will leave the file dialog
still open. For flags values see the Win32 API reference for "GetOpenFileName"
All other values may also be left empty or set to zero e.g.

GetOpenFile(0&, ","","",0) - in which case defaults will be used.

GetSaveFile

VBToolbox Documentation 26 March 2011 Page 116 of 158

Function - GetProfileDir

Declare: Public Declare Function GetProfileDir Lib "mslib145.dIl" (ByVal
FolderFlags As Integer) As String

Purpose: Retrieves one of many common Windows directories.
E.g.: "C:\Documents and Settings\All Users\Documents\My Pictures"

Notes: Compatible with Versions of Windows from NT4.0 upwards
This function needs to be passed a valid CISDL value (Constant Item Special ID List)
to identify the which class of folder to retrieve from Windows. Folders available will
vary according to which version of Windows is in use. You can get more
information from:

http://msdn.microsoft.com/en-us/library/bb762494(VS.85).aspx

Here are CSIDL values and folders from 0 to 255 for Windows XP SP2

No. |Folder Name

"C:\Documents and Settings\Admin\Desktop"

"C:\Documents and Settings\Admin\Start Menu\Programs"

"C:\Documents and Settings\Admin\My Documents"

"C:\Documents and Settings\All Users\Start Menu\Programs\Startup"

"C:\Documents and Settings\Admin\Recent"

0
2
5
6 "C:\Documents and Settings\Admin\Favorites"
7
8
9

"C:\Documents and Settings\Admin\SendTo"

1 "C:\Documents and Settings\Admin\Start Menu"

13 "C:\Documents and Settings\Admin\My Documents\My Music"

14 "C:\Documents and Settings\Admin\My Documents\My Videos"

16 "C:\Documents and Settings\Admin\Desktop"

19 "C:\Documents and Settings\Admin\NetHood"

20 "C:\WINDOWS\Fonts"

21 "C:\Documents and Settings\Admin\Templates"

22 "C:\Documents and Settings\All Users\Start Menu"

23 "C:\Documents and Settings\All Users\Start Menu\Programs"

24 "C:\Documents and Settings\All Users\Start Menu\Programs\Startup"

25 "C:\Documents and Settings\All Users\Desktop"

26 "C:\Documents and Settings\Admin\Application Data"

27 "C:\Documents and Settings\Admin\PrintHood"

28 "C:\Documents and Settings\Admin\Local Settings\Application Data"

31 "C:\Documents and Settings\All Users\Favorites"

32 "C:\Documents and Settings\Admin\Local Settings\Temporary Internet Files"

33 "C:\Documents and Settings\Admin\Cookies"

34 "C:\Documents and Settings\Admin\Local Settings\History"

35 "C:\Documents and Settings\All Users\Application Data"

36 "C:\WINDOWS"

VBToolbox Documentation 26 March 2011 Page 117 of 158

37 "C:\WINDOWS\system32"

38 "C:\Program Files"

39 "C:\Documents and Settings\Admin\My Documents\My Pictures"

40 "C:\Documents and Settings\Admin"

4] "CA\WINDOWS\system32"

43 "C:\Program Files\Common Files"

45 "C:\Documents and Settings\All Users\Templates"

46 "C:\Documents and Settings\All Users\Documents"

47 "C:\Documents and Settings\All Users\Start Menu\Programs\Administrative Tools"
48 "C:\Documents and Settings\Admin\Start Menu\Programs\Administrative Tools"
53 "C:\Documents and Settings\All Users\Documents\My Music"

54 "C:\Documents and Settings\All Users\Documents\My Pictures"

55 "C:\Documents and Settings\All Users\Documents\My Videos"

56 "C:\WINDOWS\resources"

59 "C:\Documents and Settings\Admin\Local Settings\Application Data\Microsoft\CD Burning"

VBToolbox Documentation 26 March 2011 Page 118 of 158

Function - GetSavefFile

Declare: Public Declare Function GetSaveFile Lib "mslib145.dlI" (ByVal hWnd As Any,
ByVal Filter As String, ByVal Title As String, ByVal InitDir As String,
ByVal DefaultName As String, ByVal flags As Integer) As String

Purpose: Provide a Save File dialog equivalent to that provided by the Visual BASIC
Common Dialog OCX control. This used pure Win32 APl and does not require any
control to be installed or distributed with the program.

Notes: The Window handle (hWnd) may be specified as NULL (use 0&). However, if you
do this then the Open File dialog won't be "bound" to your application and will not
be "application modal" either. If you close your app then it will leave the file dialog
still open. For flags values see the Win32 API reference for "GetSaveFileName"

A default filename may be given which will be returned if the user cancels input.
All other values may also be left empty or set to zero e.g.
GetSaveFile(0&, "","","","",0) - in which case defaults will be used.

See also: GetSaveFile

Function - GetSystemDir
Declare: Public Declare Function GetSystemDir Lib "mslib[45.dIl" () As String

Purpose: Returns the current windows system directory (e.g. c:\windows\system32\)

Function - GetUserDir
Declare: Public Declare Function GetUserDir Lib "mslib145.dll" () As String

Purpose: Returns the current windows user directory
(e.g."C:\Documents and Settings\Administrator")

Notes: Not compatible with Windows NT. Minimum Windows version: Windows 2000

Function - GetWallpaper

Declare: Public Declare Function GetWallpaper Lib "mslib145.dIlI" (Optional ByRef
Style As Integer = 0) As String

Purpose: Retrieves the filename/path and, optionally, the display mode of the current
wallpaper. The style value will be one of three values (if the parameter is used):
I:Centred (default), 2 (or 8):Tiled, 4:Stretched
The style value returned from GetWallpaper(), if specified, is designed to be used
with SetWallpaper()

Example: GetWallpaper() 'Returns "c:\windows\winnt.bmp"
GetWallpaper(x) ' Also returns 8 in parameter "x" (tiled with both reg values set)
Notes: A JPG (JPEG) file cannot be used as a wallpaper. All such files need to be converted
into a Windows Bitmap (BMP) file. This happens even on XP and Vista before they
are used as a wallpaper. Converted JPEG wallpapers are usually stored in
"\Documents and Settings\<User>\Local Settings\Application Data\Microsoft\"

See Also: GetWallpaperStyle

VBToolbox Documentation 26 March 2011 Page 119 of 158

Function - GetWallpaperStyle

Declare:

Purpose:

See also:

Public Declare Function GetWoallpaperStyle Lib "mslib145.dIl" () As Integer

Return the current Windows wallpaper style setting. This will be one of "Centred"
(Default), Tiled or Stretched - encoded as 1, 2 or 4 respectively.

Since two values are used in the registry to store the "Tiled" setting 8 is also
returned for tiled mode. If both registry settings are found to be set then the return

is encoded as (2 AND 8) - 10

GetWallpaper

Function - GetWindowsDir

Declare:

Purpose:

Public Declare Function GetWindowsDir Lib "mslib145.dll" () As String

Returns the current windows directory (e.g."C:\Windows\")

Function - IsClipboardEmpty

Declare:

Purpose:

Public Declare Function IsClipboardEmpty Lib "mslib145.dll" () As Boolean

Detects whether the Windows clipboard is empty or not

Function - IsEventSource

Declare:

Purpose:

Example:

Notes:

Public Declare Function IsEventSource Lib "mslib145.dII" (ByVal
AppName As String) As Boolean

Detects whether a given application (or application-string) is set in the system-
registry as a known event-source by Windows. This function may be used as a
conditional-test before calling AddEventSource() to register the application or to
take other action to handle logging.

If Not IsEventSource ("VBToolbox") Then
Debug.Print "VBToolbox isn't set as an event-source, adding..."
Debug.Print "AddEventSource=";AddEventSource ("VBToolbox")

End If

Currently this function tests for the presence of the application-key in:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\Application\<App-name>

See also:

If found, then the key value for EventMessageFile is checked. If this is also
present, then it's value is retrieved and the filename and full-path is compared with
that of the loaded DLL. If the two match exactly (ignoring case) then the application
is assumed to be registered with the system. Note that you can still log error
messages using LogEvent() even if the application is not registered. See LogEvent()
for more information.

AddEventSource, RemoveEventSource, LogEvent

VBToolbox Documentation 26 March 2011 Page 120 of 158

Function - IsMousePresent
Declare: Public Declare Function IsMousePresent Lib "mslib145.dll" () As Boolean

Purpose: Returns a Boolean indicating whether the system has a mouse connected

Function - IsNetworked
Declare: Public Declare Function IsNetworked Lib "mslib145.dIlI" () As Boolean

Purpose: Returns a Boolean indicating whether the system has an active network

Function - IsSafeMode
Declare: Public Declare Function IsSafeMode Lib "mslib145.dIl" () As Boolean

Purpose: Returns a Boolean indicating whether Windows is running in Safe Mode or not

Function — IsSlowMachine
Declare: Public Declare Function IsSlowMachine Lib "mslib145.dll" () As Boolean

Purpose: Returns a Boolean indicating whether the CPU is a slow one

VBToolbox Documentation 26 March 2011 Page 121 of 158

Function - LogEvent

Declare: Public Declare Function LogEvent Lib "mslib145.dIl" (ByVal AppName As String, _
ByVal Message As String, _
ByVal LogType As Integer, _
Optional ByVal PostScript as String=vbNullString) As Boolean

Purpose: A convenient and direct APl wrapper for Windows ("NT") family event logging into
the system's Application event or error log. You may specify a main insertion string
which will be placed inside the relevant message template. Additionally, you may
specify a "postscript” string which will be concatenated onto the main string. There
is a system-limit of 32k characters per insertion string. Commonly the postscript
parameter may be used to append an error-code in string format.

Caution: The application needs to be registered as an event-source for the message
descriptions to be readable by the Event Viewer dfter the event was logged and
possibly after the program has exited. Until you register the VBToolbox DLL in the
system registry as a known-message source using AddEventSource() the entries
in the error-log will be readable but will contain a harmless warning prefix as
follows:

The description for Event ID (11) in Source

(VBToolbox) cannot be found. The local computer may
not have the necessary registry information or message
DLL files to display messages from a remote computer.
You may be able to use the /AUXSOURCE= flag to retrieve
this description; see Help and Support for details. The
following information is part of the event:

This also applies where a DLL or EXE has been registered as an event-source but
was deleted from disk or renamed at a later date. Logging will still function should
you not wish to add your application to the system registry. You should take care,
however, modifying the system registry. Also, your program will need to be running
as a user with sufficient privileges to add a new sub-key to:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\Application\

WARNING: You MUST NOT UPX or otherwise re-compress this DLL if you
intend to use the logging functions. This applies even after the program has exited.
Although supplied UPX-compressed, the DLL has to have very specific sections of
the resource-table excluded.

Exarn;ﬂe: Debug.Print "AddEventSource="; AddEventSource ("VBToolbox")
Debug.Print "LogEvent="; LogEvent ("VBToolbox",
"Testing SUCCESS message", EVENTLOG SUCCESS," (Error: 0x00)")

Relevant registry-entries for "VBToolbox" are created under:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\Application\VBToolbox

VBToolbox Documentation 26 March 2011 Page 122 of 158

Function - LogEvent (Continued...)

Notes:

The log result is written to the Application log. (Start->Run->Eventvwr to view)

Event Properties

Date: [EEEREE Source: WEBToolbox +
Tirne; 23:40:30 Cateqony: Mone

Tupe: MHone Ewent [D: 1 +
Uzer: I,

Computer: TOSHIBA,

D escriptian:
Success: Testng SUUCCESS message [Eror 0=00]

VB5 (and later) already offers the LogEvent method as an attribute of the App.
object. VB5 logs an event in the application's log target. On Windows NT and later
platforms, the method writes to the Windows Event log. On Windows 9x
platforms, the method writes to the file specified in the LogPath property.

Note that you can format your messages by embedding carriage-return and linefeed
pairs using vbCrlf to create line-breaks.

The event IDs map to keys held in the registry under:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\Application\<app-name>

See also:

VBToolbox Documentation

Visual BASIC Object.Logevent() (Built-in)

vbLogEventTypeError 1 Error.
vbLogEventTypeWarning 2 Warning.
vbLogEventTypeInformation 4 Information.

Win32 API/VBToolbox Logevent()

Public Const EVENTLOG_ SUCCESS = 0
Public Const EVENTLOG ERROR TYPE = 1
Public Const EVENTLOG WARNING TYPE = 2
Public Const EVENTLOG INFORMATION TYPE = 4
Public Const EVENTLOG_AUDIT SUCCESS = 8
1

Public Const EVENTLOG AUDIT FAILURE = 10

You should use only the above constants when calling LogEvent()
The logged event-id will be +1 higher than the EVENTLOG_* const used.

For more information visit:
http://msdn.microsoft.com/en-us/library/aa363651 (VS.85).aspx

Event-logging functionality has been tested only on the NT-family of Windows such
as Windows XP. It has been tested on and is known to work on NT 4.0 (SP62)

It has not been tested on any version of Windows 9x

IsEventSource(), AddEventSource(), RemoveEventSource()

26 March 2011 Page 123 of 158

Function - MonitorCount

Declare:

Purpose:

Public Declare Function MonitorCount Lib "mslib145.dll" () As Integer

Returns an Integer giving the number of video monitors attached to Windows

Function - PrintDebug

Declare:

Purpose:

Public Declare Sub PrintDebug Lib "mslib145.dll" (s As String)

Sends a string to the registered system debugger using the OutputDebugString
API call

Sub - PrintScreen

Declare:

Purpose:

Public Declare Sub PrintScreen Lib "mslib145.dIl" ()

Captures the current application window contents to the clipboard

Function - RemoveEventSource

Declare:

Purpose:
Example:

Notes:

See also:

Public Declare Function RemoveEventSource Lib "mslib145.dll" (ByVal
AppName As String) As Boolean

De-Registers your application as a source of system event-log messages
Debug.Print "RemoveEventSource="; RemoveEventSource ("VBToolbox")

You MUST NOT UPX or otherwise re-compress this DLL if you intend to use the
logging functions. Although supplied UPX compressed the DLL has to have very
specific sections of the resource-table excluded.

You can use any name for "AppName" as long as it remains constant throughout the
life of your application. Add or "register" your application as a source of messages
using AddEventSource(). You can still log events even when not registered or
after you have de-registered your application. Your event messages will be prefixed
with an informational warning by Windows to the effect that the message template
could not be found.

Note that if you remove an event-source at any time dfter an event is logged then
you will not be able to view the log-message in full using the message template
within Eventvwr. Also, if the registered DLL or EXE is removed at a later point then
the contents of the event log will be likewise affected.

IsEventSource, AddEventSource, LogEvent

VBToolbox Documentation 26 March 2011 Page 124 of 158

Function - SetCurrentDir

Declare:

Purpose:

See also:

Public Declare Function GetCurrentDir Lib "mslib145.dIl" _
(ByRef Path As String) As Boolean

Sets the current working-directory

GetCurrentDir

Function - SetWallpaper

Declare:

Purpose:

Example:

Notes:

See also:

Public Declare Function SetWallpaper Lib "mslib145.dIl" (ByVal FileName
As String, Optional ByVal Style As Integer = 0) As Boolean

Sets the wallpaper to a local bitmap (BMP) file. The optional value for display Style
can be set to one of three values:

I:Centred (default), 2 (or 8):Tiled, 4:Stretched

Any other value selects the default. (Centred, normal size or "unstretched")

The value returned by GetWallpaper() may be used unchanged to set correctly.

A filename may be omitted and specified as an empty string " to change the display
mode for the current wallpaper.

SetWallpaper ("C:\winnt\winnt.bmp",2) ' Set to "winnt.bmp", tiled
SetWallpaper ("",4) ' Change current to stretch format

The display modes are coded in binary increments of 1,2,4 and 8 as two registry
settings are affected by the "tiled" display choice.

Note that although Windows will let you select a JPG (JPEG) file, the Windows API
appears only to let you select a bitmap. What happens in Windows is that the files
are converted to BMP format before use.

GetWallpaper, GetWallpaperStyle

Function - ShellRun

Declare:

Purpose:

Examples:

Public Declare Function ShellRun Lib "mslib145.dIl" (ByVal Command As String)
As Boolean

Execute a Windows "Shell" command. This can be used to launch an associated file
via the Windows Explorer shell interface. You can supply either the name of a file
which has a valid association, a program, or a valid internet URL. The Window is
opened in normal mode. Currently there are no options to execute the associated
application hidden or minimised. This is merely a convenient wrapper for the
ShellExecute() API function. If successfully-launched ShellRun returns True.

ShellRun ("c:\txt\somefile.txt")

ShellRun ("program.exe")

ShellRun ("http://www.google.com")

ShellRun (""mailto:someonelsomeisp.com?subject=Test Email&body=Hello")

VBToolbox Documentation 26 March 2011 Page 125 of 158

Function - ShowFileProperties

Declare: Public Declare Function ShowFileProperties Lib "mslib[45.dII" (_
ByVal s As String, _
Optional ByVal hWnd As Long = 0) As Boolean

Purpose: Launches a Windows Explorer "Properties" screen for a given file

Notes: The file must exist and the procedure performs relevant checks that the file exists
before launching.

A Boolean value is returned indicating success or failure to launch

VBToolbox Documentation 26 March 2011 Page 126 of 158

Function - WindowsSubVersion

Declare:

Purpose:

Public Declare Function WindowsSubVersion Lib "mslib[45.dIl" () As String

Returns the current windows sub-version as an ASNI string value -
e.g. returns the string “Service Pack 2” for Windows XP

Function - WindowsVersion

Declare:

Purpose:

Public Declare Function WindowsVersion Lib "mslib[45.dIl" () As String

Returns the current windows version as a 4-character (byte) string value:
e.g. "5.1" for Windows XP

Function - WindowsVersionMajor

Declare:

Purpose:

Public Declare Function WindowsVersionMajor Lib "mslib145.dIl" () As Long

Returns the current windows version major number as a Long value:
e.g. 5 for Windows XP (5.1)

Function - WindowsVersionMinor

Declare:

Purpose:

Public Declare Function WindowsVersionMinor Lib "mslib145.dll" () As Long

Returns the current windows version minor number as a Long value:
e.g. | for Windows XP (5.1)

Function - WinSleep

Declare:

Purpose:

Notes:

Public Declare Sub WinSleep Lib "mslib145.dll" (ByVal Msecs As Integer)

Halts execution for a specified number of milliseconds without halting the Operating
System (Windows). This safely exposes the Windows API "Sleep()" function with
bounds checking for negative numbers

The parameter should be given in thousandths of a second (milliseconds)

Values below | millisecond are rejected

The highest value possible is that of "signed int" milliseconds (32767ms) or 32.767
seconds

VBToolbox Documentation 26 March 2011 Page 127 of 158

Windows Registry-Related Functions

Great care should be exercised when writing to the Windows registry. Writing improper data or to
particular areas of the registry will render your system inoperative. It is highly-recommended that any
code which modifies the registry ensures that the registry is securely backed-up first.

Windows Registry Constants

Note that the registry key prefix represents the "root" of the registry and any sub keys are relative to
this. Hence, no sub key-value should be prefixed with a backslash "\" character. or the function-call
will fail.

ReadStringFromRegistry (HKEY LOCAL USER, "Control Panelldesktop", _
"wallpaper")

Wrong: ReadStringFromRegistry (HKEY LOCAL USER, "\Control Panel\desktop", _
"wallpaper")

These are the constants for the top-level keys. Unless correctly defined then you may run into
problems when using the registry and Windows API.

The following values are negatively-signed Long Integers

Public Const HKEY CLASSES ROOT = &H80000000
Public Const HKEY LOCAL USER = &H80000001
Public Const HKEY LOCAL MACHINE = &H80000002
Public Const HKEY USERS = &H80000003

Public Const HKEY CURRENT CONFIG = &H80000005

Function - ReadDWORDFromRegistry
Declare: Public Declare Function ReadDWORDFromRegistry Lib "mslib [45.dII"

(ByVal hKey As Long, ByVal SubKey As String, ByVal Value As String,
ByRef DWORDValue As Long) As Boolean

Purpose: Read a double-word DWORD (Long) data type from a registry-key.
Notes: The function returns a boolean indicating whether the read was successful.

If False is returned any DWORD value returned should be ignored.
The user must have access to the particular section of the registry

Function - ReadStringFromRegistry

Declare: Public Declare Function ReadStringFromRegistry Lib "mslib145.dll" (ByVal hKey
As Long, ByVal SubKey As String, ByVal Value As String) As String

Purpose: Reads a string from the registry in any of the top-level hives.
hKey represents one of the top level keys (See above)

Exanuﬂe: ReadStringFromRegistry (HKEY LOCAL USER, "Control Panelldesktop",
"wallpaper")

Result: "c:\winnt\winnt256.bmp"

Notes: You must be logged in as a user with adequate access-rights in order to be able to

read (or write to) certain areas of the registry

VBToolbox Documentation 26 March 2011 Page 128 of 158

Function - WriteDWORDToRegistry

Declare: Public Declare Function WriteDWORDToRegistry Lib "mslib145.dII"
(ByVal hKey As Long, ByVal SubKey As String, ByVal Value As String,
ByVal DWORDValue As Long) As Boolean

Purpose: Write a double-word DWORD (Long) data type to a registry-key.

Notes: The function returns a boolean indicating whether the write was successful.
If the key does not exist it will be created
The user-account running the program must have sufficient access-rights

Function - WriteStringToRegistry

Declare: Public Declare Function WriteStringToRegistry Lib "mslib145.dIl" (ByVal hKey
As Long, ByVal SubKey As String, ByVal Value As String,
ByVal Data as String) As Boolean

Purpose: Writes a string from the registry in any of the top-level hives.
hKey represents one of the top level keys (See above)

Example: WriteStringToRegistry (HKEY CURRENT USER, "Control Panel\desktop","wallpaper","My.bmp")
Notes: You must be logged in as a user with adequate access-rights in order to be able

to read (or write to) certain areas of the registry
If the attempt to write was successful True will be returned

Later versions will include additional registry functions

VBToolbox Documentation 26 March 2011 Page 129 of 158

Windows Process Functions
Function - GetPID

Declare: Public Declare Function GetPID Lib "mslib145.dIl" () As Long

Purpose: Returns the unique Process ID (PID) of the current program as a long integer

Function - GetProcessMemoryUsed
Declare: Public Declare Function GetProcessMemoryUsed Lib "mslib145.dll" () As Long

Purpose: Returns the number of bytes from a process by process-ID. Use GetPID() to
retrieve the process ID of your own application.

Notes: On failure -1 is returned - otherwise the number of bytes used.

Divide by 1024 to get Kb, Divide by (1024.0%1024.0) or by 1048576.0 to return the
number of megabytes (as a Double)

Example: Debug.Print GetProcessMemoryUsed (GetPID())/1024; ™ Kb used”

Result: 63601 Kb used”

VBToolbox Documentation 26 March 2011 Page 130 of 158

Graphics Functions

It is envisaged that very few graphics functions will be added other than specialised functions. If for no
other reason than the free availability of the excellent mod_gd/GD graphics library from
http://www.boutell.com/gd/ which can be called from most programming languages (including PHP).

A range of graphics functions have been used as an adjunct to encryption and as a container for data
including RLE-compressed data produced by this library.

Function - BGRSplit

Declare:

Purpose:

Public Declare Sub BGRSplit Lib "mslib145" (ByVal BGRValue As Long,
ByRef Red As Integer, ByRef Green As Integer, ByRef Blue As Integer)

Splits a Visual BASIC BGR colour value into separate Red, Green and Blue
components. Note that VB stores 24-bit RGB values in reverse byte order.

Function - BGRToRGB

Declare: Public Declare Function BGRToRGB Lib "mslib145" (ByVal BGRValue As _
Long) As Long

Purpose: Perform a rapid transform using bit-shifting between a Visual BASIC BGR
(Blue,Green,Red) encoded Long and normal RGB format. The higher byte of a 4-
byte Long value is masked-off and ignored.

Example: Visual BASIC stores the product of the Rgb() function in BGR order. You can
demonstrate this as follows.
Debug.Print Hex (Rgb(1l,2,3))
Prints out: "30201"' 0x03, 0x02, 0x01
Debug.Print Hex (BGRToRGB (Rgb(1,2,3)))
Prints out: "10203" ' 0x01, 0x02, 0x03

See also: StringToBMP, BMPToString, BGRToRGB

VBToolbox Documentation 26 March 2011

Page 131 of 158

Function - GetColourSelection

Declare: Public Declare Function GetColourSelection Lib "mslib145.dII" (_
ByVal hWnd As Long, Optional FullExpand As Boolean = True, _
Optional RGBCurrentColour As Long = 0) As Long

Purpose: Evoke and use the standard Windows API colour selection dialogue

The current colour selection may be passed as a Microsoft (VB) RGB (BGR) colour
value in "RGBCurrentColour"

Note that Microsoft 24-bit colour values are in Blue-Green-Red order from high to
low byte. (BGR). You may use BGRToRGB to reverse the byte-order

You may use the Visual BASIC Rgb() function to create a valid RGB Long value or
input the value from say a Rich Text box control object.

By default the full colour-selection palette is expanded. You may contact this by
setting the "FullExpand" parameter to False.

The 16 custom colour selections are persistent whilst the DLL is loaded in memory

Example: The following code gives an example of picking a colour using the dialogue

Debug.Print GetColourSelection (0, True,Rgb(255,128,8)) :End

Colar

Bazic colors:

| T
U Rl B
EFFEENEN
ENEEEENEN
ENEEEENN
EEEEETE

LCustom colors:

MAEEEEEN

: Hug:’-EE_ Eed:ﬁfﬁ“
-.--.... Eat:[ﬁ Ereen:l‘ﬁ?‘

D efine Custom Colors #; | *Color Lur: ﬁE Blue: ﬁE—

4 | Cancel |

See also: BGRToRGB, GetOpenFile, GetSaveFile

VBToolbox Documentation 26 March 2011 Page 132 of 158

Function - RGBVal

Declare:

Purpose:

Notes:

Example:

See also:

Public Declare Function RGBVal Lib "mslib 145" (ByVal RGBString _
As String) As Long

Convert a standard "internet" or HTML colour string value to an RGB Long data
value.

The string need not be prefixed by the hash (#) character.

The data is in RGB (Red, Green, Blue) byte-order. Visual BASIC stores it's Rgb()
function values in BGR (Blue, Green, Red) order

Debug.Print RGBVal ("#0000FF"™) ' Blue
Prints out "255"

Debug.Print RGBVal ("FFOOFF") ' Magenta
Prints out "16711935"

StringToBMP, BMPToString, BGRToRGB

Function - StringToBMP

Declare:

Purpose:

Notes:

See also:

Public Declare Function StringToBMP Lib "mslib145" (ByVal s As String, _
ByVal Size As Long, _
ByRef BMPData As String, ByRef BMPSize As Long,
Optional ByVal ForeColour As Long = 0, _
Optional ByVal BackColour As Long = &HFFFFFF) As Boolean

Cryptography function. Converts any block of data, including valid bitmap data into
a valid, rectangular 2-colour, bitmap (BMP) image. This may be useful as an efficient
cryptograpic or other container for raw binary data. The bitmap header guarantees
that the stored data will be returned precisely. and the | bit per pixel (8 pixels-per-
byte) format guarantees efficient storage. The foreground and background colour
may be set to the same value to visually "hide"any data stored in the image. The
returned data-block may be written directly to file as a Windows BMP image.

The colour-values to be supplied are in VB BGR (Blue/Green/Red) byte-format as
returned from the VB function, Rgb(). You can use BGRToRGB() to rotate between
any byte-format.

The image will be rectangular and a multiple/minimum width of 32 pixels. This is in
order to pack as much data efficiently as possible within the technical limitations of
the BMP format which requires multiples of 4 bytes (32px at |bpp)

The return value "BMPSize" is the size of the new bitmap file data-block in bytes.
This is NOT the size of the encoded data held within the bitmap. It may include
padding bytes added to make the width a multiple of 32 bits. The stored data block
size can be obtained from BMPToString or BMPDataSize

This function does NOT encrypt or compress data. It simply offers a useful
container object. Due to limitations of the bitmap format the image may not be
perfectly square.

The size of the data-block should be supplied. This must NOT exceed the bounds
of the allocated data-block. The returned length of the new bitmap object is
returned via the optional parameter, BMPSize. Use BMPToString() to decode.

BMPInfo, BMPToString, BGRToRGB

VBToolbox Documentation 26 March 2011 Page 133 of 158

Function - BMPToString
Declare: Public Declare Function BMPToString Lib "mslib145" (_
ByVal BMPData As String, _
ByRef s As String, _
Optional ByRef NewStringLength As Long = 0) As Boolean
Purpose: Cryptography function. Decodes information stored in a bitmap (BMP) image
created by StringToBMP. The size of the decoded data-block is returned via the
optional parameter "NewStringlLength".

Notes: Returns a Boolean value indicating success or failure

See also: BMPInfo, StringToBMP, BGRToRGB

Function - BMPDataSize

Declare: Public Declare Function BMPDataSize Lib "mslib145" (ByVal
BMPData As String) As Long

Purpose: Cryptography function. Returns the size of the data block (if any) stored within a
BMP image by StringToBMP()

See also: BMPInfo, StringToBMP, BGRToRGB

Function - BMPInfo

Declare: Public Declare Function BMPInfo Lib "mslib 145" (ByVal BMPData As String, _
Optional ByRef Width As Long, Optional ByRef Height As Long, _
Optional ByRef SizeBytes As Long, Optional ByRef Bpp As Long) As
Boolean

Purpose: Retrieve rudimentary information about a bitmap (BMP) file. Namely, the Width in
pixels, Height in pixels, the allocated data-block size in bytes and the number of bits
per pixel. For 2 colour bitmaps this will be | bit per pixel or 8 pixels per byte.

See also: StringToBMP, BMPToString, BGRToRGB

Function - JPEGCheck

Declare: Public Declare Function JPEGCheck Lib "mslib145.dIl" (ByVal FileName As String)
As Boolean
Purpose: Performs very basic checks on a JPEG file's header(s) and return a simple true or

false value indicating that the file appears to be OK.

The file is not loaded, nor is any in-depth checking made on the entire file other
than to ensure that the reported Windows size matches the readable number of
bytes. The file may still be corrupted and unreadable for many other reasons such as

a corrupted or short data-block. The function makes use of JPEGHeader()

See also: JPEGHeader

VBToolbox Documentation 26 March 2011 Page 134 of 158

Function - JPEGHeader

Declare: Public Declare Function JPEGHeader Lib "mslib145.dIl" (ByVal FileName
As String, Width As Integer, Height As Integer, FileLength As Long)
As Boolean

Purpose: Reads the pre-header and certain known headers of a JPEG file and makes basic

checks on the file's integrity before returning the indicated file length and width and
height dimensions in pixels. This gives a rough indication when a file is corrupted.

Note that the Width, Height and FileLength values are passed ByRef and this
declaration should NOT be changed. All values must be passed even if they are not
used. Use JPEGCheck() to perform simple file-integrity checks instead.

If the file appears to be readable "true" is returned. This does not, however, indicate
that the file is fully-readable or guarantee that it is not corrupted due to damaged
data-block or shortfall in the total number of bytes in a data-block.

A "False" return does not guarantee the file is faulty. Due to the wide-variety of
JPEG formats it may be in a custom or bespoke format which is fully-readable by
your system.

Example: Dim Width as Integer
Dim Height as Integer
Dim Length as Long
Debug.Print JPEGHeader ("myfile.jpg",Width,Height, Length)
Debug.Print "Width="; Width; "px"
Debug.Print "Height="; Height; "px"
Debug.Print "File length="; Length; " bytes"

Result:
True
1024px
768px
54332 bytes

See also: JPEGCheck

VBToolbox Documentation 26 March 2011 Page 135 of 158

MAPI and Email Functions

Function - MAPISend

Declare: Public Declare Function MapiSend Lib "mslib145.dIl" (ByVal hWindParent As Long, _

Optional ByVal strAttachmentName As String = ", _

Optional ByVal strSubject As String = ™,
Optional ByVal strMessage As String = ""

) As Boolean

Purpose: Send an email using Windows MAPI functionality. All values are optional.
Where hWndParent is omitted use zero (Long) as 0&

Requirements: A MAPI-compliant email client and MAPI32.DLL installed

Notes: This is experimental from V1.21+. The function requires that MAPI is correctly-
configured on your Windows system and that you have a valid MAPI email client
such as Microsoft Outlook, Outlook Express or Incredimail installed.

Using the Windows shell “MAILTO:” functionality can also be used where
attachments are not required. Attachment support is not specified in the relevant
RFCs and is implemented unreliably by differing mail clients.

At present there are bugs in the MAPI implementation of MAPI32.DLL in both
SeaMonkey and Mozilla Thunderbird which mean file-attachments may not work
properly or at all.

Note also that swapping default MAPI clients on Windows involves swapping out
MAPI32.DLL which is a DLL customised to individual software. Changing this may
break functionality in other installed clients (e.g. Novell Groupwise (TM)). Swapping
MAPI clients may not always work well, or at all.

See:
https://bugzilla.mozilla.org/show bug.cgilid=244222
http://en.wikipedia.org/wiki/Messaging Application Programming Interface

VBToolbox Documentation 26 March 2011 Page 136 of 158

Compression Functions
These may be used in conjunction with image-manipulation container-functions such as StringToBMP,
BMPToString etc. Bitmap images make ideal space-efficient containers for compressed and encrypted

data.

Function - RLEByteCount

Declare: Public Declare Function RLEByteCount Lib "mslib[45.dII" (ByVal sinput As String)
As Long
Purpose: Returns the size of the compressed data-block held in an RLE-compressed string

which has been compressed using RLECompress. If the data is not compressed then
the function returns zero.

Function - RLECompress

Declare: Public Declare Function RLECompress Lib "mslib[45.dIl" (ByVal slnput _
As String, ByVal length As Long, Optional ByRef NewLength As Long) _
As String

Purpose: Compress an ANSI or binary-string using run-length encoding

The Newlength parameter is optional but will return the size of the newly-
compressed string. The string to compress may contain nulls.

Notes: The length of compressed strings is stored by Visual BASIC but you should
carefully-control and record the length of compressed strings in your own
programs. Like many compression algorithms, RLE may result in no compression
gain at all and could increase the size of the compressed block depending on the
quality of the data supplied.

If the data is not compressible then zero is returned via NewLength and the original
string is returned. You should test the NewLength return before attempting to
decompress a string which may not have been compressed.. If the string is
compressed successfully then the new, shorter

Function - RLECompressed

Declare: Public Declare Function RLECompressed Lib "mslib145.dII" (_
ByVal sInput As String) As Boolean

Purpose: Returns VB Boolean True if a string is compressed by the VBToolbox RLE
compression functions. Otherwise False is returned.

Example: Immediate Pane example

b$="":a$="Helllo Worllld":call RLECompress (a$,b$):? RLECompressed (b$)
' Returns True

Function - RLECompressible

Declare: Public Declare Function RLECompressible Lib "mslib145.dIl" (ByVal slnput As
String) As Boolean

Purpose: Returns VB Boolean True if a compression-gain is possible using RLE encoding,

VBToolbox Documentation 26 March 2011 Page 137 of 158

otherwise False. This function should be used to test before compressing otherwise
compression could increase the size of the data block

VBToolbox Documentation 26 March 2011 Page 138 of 158

Function - RLEUncompress

Declare: Public Declare Function RLEUncompress Lib "mslib145.dIl" (ByVal slnput _
As String, ByVal length As Long, Optional ByRef NewLength As Long) As
String

Purpose: Uncompress a binary string compressed using RLECompress

Notes: The length of compressed strings is stored by Visual BASIC but you should

carefully-control and record the length of compressed strings in your own
programs. Like many compression algorithms, RLE may result in no compression
gain at all and could increase the size of the compressed block depending on the
quality of the data supplied.

The size of the uncompressed string is returned via NewLengthFunction -
RLECompressByteCount

Function - RLECompressByteCount

Declare: Public Declare Function RLECompressByteCount Lib "mslib145.dll" _
(ByVal sInput As String, ByVal length As Long) As Long

Purpose: Calculate the number of bytes required to store a given string or series of bytes
This function can be used to decide whether a given block of data is worth
compressing with RLECompress. RLECompressible serves the same purpose.

Function - RLEUncompressByteCount

Declare: Public Declare Function RLEUncompressByteCount Lib "mslib145.dIl"
(ByVal sInput As String, ByVal length As Long) As Long

Purpose: Calculate the number of bytes required to store a given RLE-compressed string

or series of bytes. This function can be used to determine the size of a buffer
required to hold the result of RLEUncompress.

VBToolbox Documentation 26 March 2011 Page 139 of 158

Visual BASIC Wrapper Code

Function - DLLVersion

Code:

Public Function DLLVersion () As String

'Version is an integer in the format "101"%$->"1.01"$

Dim VerNum As Integer
Dim Temp As String
On Error GoTo NoDll

Temp = "0.00"
VerNum = LibVersion ()

Temp = Format (VerNum)
If Len(Temp) = 3 Then

Temp = Left$(Temp, 1) & "." & Right$ (Temp,

End If
DLLVersion = Temp
Exit Function

NoDl1l1:
DLLVersion = "0.00"
Resume Next

End Function

Purpose: Safely return the installed DLL version encoded in string format with decimal place

Example vI.23 as the string "1.23"

VBToolbox Documentation 26 March 201 |

Page 140 of 158

Function - IsDLLInstalled

Code:
Public Function IsDLLInstalled() As Boolean
Dim r As Long
IsDLLInstalled = True
On Error GoTo NoDll
r = LibVersion ()
On Error GoTo 0
Exit Function

NoD11:
IsDLLInstalled = False
Resume Next

End Function

Purpose: Detect whether the DLL is installed and available. Returns True/False
No version checking is performed this simply conforms if any version of the DLL is
on the system. LibVersion() can be called to check the version number.

VBToolbox Documentation 26 March 2011 Page 141 of 158

Visual BASIC Wrapper Code

Function - Base$

Code:
Public Function Base$ (Value As Variant, BaseVal As Variant)

Dim b As Byte 'Remove unsigned part

b = CByte (BaseVal)

Select Case (VarType (Value))

Case vbByte:
Base$ = StripTerminator (BaseConv (CByte (Value), b))
'Debug.Print "BaseConv (Byte)"

Case vbInteger:
Base$ = StripTerminator (BaseConv (CInt (Value), b))
'Debug.Print "BaseConv (Integer)"

Case vbLong:
Base$ = StripTerminator (BaseConv (CLng(Value), b))
'Debug.Print "BaseConv (Long)"

Case Default:
'Debug.Print "BaseConv (Unknown)"
Base$ = ""

End Select

End Function
Purpose: Automatic overloading to call the correct base-conversion routines in the DLL

StripTerminator is now redundant and has been left in as an example

Function - Bin$

Code:
Public Function Bin$ (x As Variant)
'Debug.Print "VarType (x)="; VarType (x)
Select Case (VarType (x))
Case vbByte:
Bin$ = Bin8 (x)
Debug.Print "Bin (Byte)"
Case vbInteger:
Bin$ = Binlé6 (x)
Debug.Print "Bin (Integer)"
Case vbLong:
Bin$ = Bin32 (x)
Debug.Print "Bin (Long)"
Case Default:
Debug.Print "Bin (Unknown)"
Bin$ = ""
End Select
End Function
Purpose: Automatically call the correct overload for Bin() in the DLL
VBToolbox Documentation 26 March 2011 Page 142 of 158

Visual BASIC Wrapper Code

Function - VariantToArray

Code:

Purpose:

Notes:

Public Sub VariantToArray (ByRef V As Variant, ByRef R() As String)
'Lbound will be affected by the "Option Base" setting
On Local Error Resume Next
Dim i As Long
If IsArray (V) Then
ReDim R (UBound (V))
For i = LBound (V) To UBound (V)
R(i) = V(i)
Next
End If
End Sub

Converts a VB or VBToolbox string-array Variant into a dynamic VB String array.
The supplied string array is destroyed and reassigned to hold the contents of the
variant. The variant is unaffected. The size of the new string array can be
determined using LBound() and UBound() as normal.

The ability to return strings via the function body is available from VB6 and higher
only. VB5 requires that a reference to a string array is passed via the function body
instead. The lower bound of the created string array will be affected by the use of
the "Option Base" setting. Care should be taken that the current setting matches
the Variant structure. "Option Base 0" is the safest setting to use.

Function - YBStr

Code:

Purpose:

Public Function VBStr (ByRef s As String) As String
'Strips one single “C” terminating NULL (0x00) char from a C String
'Only strips a terminator if there is one present
Dim i As Integer
i = InStr(s, Chr$(0))
If 1 > 0 Then
s = Left$(s, 1 - 1)
End If
VBStr = s
End Function

Strips terminating NULL characters from returned "C" strings
Required for most functions which return string values prior to vI.I |

Not normally required for versions |.l land upwards unless strings return "binary"
data

VBToolbox Documentation 26 March 2011 Page 143 of 158

Visual BASIC Wrapper Code

Function - StripTerminator

Code:
Public Function StripTerminator (s As String) As String
'Convert a NULL-terminated C++ string to VB
'Calls VBStr - not defined by VB
'This is just a wrapper function
StripTerminator = VBStr (s)
End Function
Purpose: Wrapper duplicate of VBStr

End of Main Documentation

VBToolbox Documentation 26 March 2011 Page 144 of 158

Appendix | - VBToolbox Visual BASIC Declares List

This is the list of declares specified in MSLIB145.BAS which is a companion to the both the ANSI and
Unicode/TLB version of the Toolbox DLL. The supplied disk-file may contain more recent updates,
additional useful comments and/or useful extra code

See MSLIB145.BAS for latest version

VBToolbox Documentation 26 March 2011 Page 145 of 158

Appendx Il - Erratum and Known or Reported Bugs

Early versions of _readfile (Alias) used the "C" fopen() function. However, it was found that using this
would cause other functions to make VB hang. This was a difficult bug to track down. The problem
has been resolved by replacing all stream-based i/o with the Windows API equivalents.

Feature Requests

If you have a feature-request you wish to be considered please send details to:
http://vbtoolbox.kerys.co.uk

Bug Reports and Erratum

Please send bug reports or erratum on this documentation via the website at
http://vbtoolbox.kerys.co.uk

Please include as much information as possible. Due to huge volumes of spam an email address will
only be given for detailed reports in a limited number of cases. Bugs are resolved as quickly as
possible enabling a new version of VBToolbox to be released.

VBToolbox Documentation 26 March 2011 Page 146 of 158

Appendx Ill - Useful References and Links

VBToolbox website
http://vbtoolbox.kerys.co.uk

VBToolbox alternate URL
http://software.kerys.co.uk/vbtoolbox

Visual BASIC Discussion Forum
http://www.vbforums.com/

Visual BASIC Express Edition (Free)
http://www.microsoft.com/express/vb/

Information about the Free Visual BASIC 5 Custom Control Edition
http://support.microsoft.com/kb/q| 65524/

Working with "C" DLLs in Visual BASIC
http://www.fredshack.com/docs/DLL2VB.html

Using C++ DLLs in Visual BASIC (Mike D Sutton)
http://edais.mvps.org/Tutorials/CDLL/index.html

Visual BASIC Secrets (Kevin Wilson)
http://www.thevbzone.com/secrets.htm

FreeBASIC
http://www.freebasic.net/

VB Tutor
http://www.vbtutor.net/

ISO 8601 Date/Time Representations
http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO860 | .html

Date/Time Calendar Functions
http://www.wilsonmar.com/datepgms.htm

Dates and Times for Visual BASIC
http://ros.thevbzone.com/data_types main.html

MicroApache - A portable USB Apache Webserver Distribution for Windows
http://microapache.kerys.co.uk

UPX A Free File-Compression Uctility
http://upx.sourceforget.net/

EditPad - A Free RTF Wordprocessor with encryption provided via VBToolbox
http://editpad.kerys.co.uk

Free Software Page - More free software
http://software.kerys.co.uk/

Win32 API Error Codes
http://help.netop.com/support/errorcodes/win32 error codes.htm

Mersenne Twister PRNG Home Page
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

VBToolbox Documentation 26 March 201 |

Page 147 of 158

Appendx 1V - 3rd-Party Copyright Information

Information and acknowledgements pertinent to the MT Random functions used by this software.
Mersenne Twister Random Number Generator

The Mersenne Twister(MT) is a pseudorandom number generating algorithm developed by Makoto
Matsumoto and Takuji Nishimura. The MT RNG functions include code which is copyright to the

aforementioned and released as free/open-source software. More information including possible more
efficient alternatives is available here: http://en.wikipedia.org/wiki/Mersenne twister

Home page: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

VBToolbox Documentation 26 March 2011 Page 148 of 158

Contents

ADOUL thE LibBrary............uueeeeiecnnneeiiicinnenicissnnenicsssnsenscsssssessssssssesssssssssssssssssssssssssssnes 2
General Programmer's Notes On Using the Library...............ccueeeecsvercsscnneencsnes 3
D T=E ol o T 7 [o o TR PR 3
Licensing and Terms of USe.......cuuuueeieeeieieieeinnnnennennneinieininiiniiiesisisismsssssisisascessssenes 3
Unicode and ANSI Versions of this Library......ccccccceeeiiiiiiiiiiiiniiinieeieieeiieeeeeeceeceeeeees 4
Declares (ANSI Include File - MSLIBI145.BAS).......ccccccceeiiuureecissnnerccssnnnesnnnsssessnees 4
Type Library (Unicode Version - MSLIB146.TLB).........ccccccevvumeerrecccsssccnnneeeenennnes 4
VBToolbox and Unicode Strings....ccccceeeeeeeeeeeeeeeeessnsessessesessssssssssssessessnsssscssssscesssnes 5
Caution - UPX CoOmMPresSiON....eeeeeeeeeeeeeeemmeisieisisesisisisisssisssisssssssssssssssssssssssssssnes 6
Caution - Thread Safety.......eiiiiiiiiiiisnnnntiiicciiiissssnnniniecccsssssssssseesessssseessscssssssses 6
Caution - DLLs Are €Case SPecifiC.....cccccciiiiiieiiiiiiiiciiicicicecncecncececncecececccccececsccescececnes 6
Caution - This is @ 32-bit Library..........iiniiiiiiiiininiiinininissscsiscnnsnnscensaneenes 6
Caution - Function Parameters - Use Function Return Values........cccccceceeeneeenee. 7
Caution - Visual BASIC and Unsigned Long Values...............ccuueeeeeeiiinnnniccennnnnenes 9
Caution - VB and "C™ (DLL) INtEZErs.......ccccuvvurricsssnerccssssnrncssssssrncssssssssssssssssssssnes 9
Caution - String Parameters - Use ByRef in Declares Only Where Specified..10
DLL Functions Which Return String Values...............ueiisssiiisiiicrennnncenennnnes 1
Possibly Unnecessary Function EXports...............eeeeeeeeeeeeeeeeeeeeneeeeeeeenneeneeeeeeeenenes 1
Duplicate Name Conflicts When Calling DLLs........cccccceeeiiiiinieeieeeeeceneeeceeeceennenees 12
Correct DLL Function Calling Conventions and Visual BASIC IDE Issues....... 12
Visual BASIC, Windows XP and Data Execution Prevention (DEP) Issues...... 13
DEP Problem WorkaroUnd.........ccccceevumeneeeeeeccccisssssnneecesccsssssnsssseesescssssssssssaseessaee 13
Console FUNCIONAlItY.....eeeiiiiiiiiiiinnnneieiiicisissnnnnneiieccssssssnssseteecsssssssssssssssssssssssseeses 14
Server CGl APPliCAtioNS....eciiieciiiiiiscnnettiiecisiisssnnnetieccssssssssssteeeccssssssssssseesecsseesss 14
Intended Language and O/S Platformscccecvivnnnneiiecccsssisnnnneenieceseesnnneeennses 14
Other DLL Libraries You €an Use........cccccvrvrnnneerrenscssssssneeressessssssssssssessesssssssssens 14
Why do you call it “BASIC” instead of “Basic’l..........uuuuueeeeevveeeneneennennnnennnnnnnnness 14
BUZ REPOFtING..ccciiiiiiiiiiiiiiiiiniiiiieiiiienieiiiiinieieteiiieteteieeeeceseeeseseseseseseseseeesesssesssssssssseses 14
VBT000Ibox INSTallGtioN............ueuuueeeeeeeeeiiiissnnnnnneeneeccsssssnnssneeeesscssssssssssssneesssssssens 15
Installation Procedure.........ccocnnueeeeeiiencciisnnnsnneeeeseccsssssssanseecesscsssssssesssesssssssssssnens 15
Installation Troubleshooting..........ccceiiiiiiiiiiiiiiiiiiiiiieiiiiieieiieiiiiiiieieieeeeeeeeeecseceeeesnes 15

Visual BASIC - Application Setup Wizard - Install/Setup - Troubleshooting . .15

FUNCLION INTEIACE LiStu.auaaeeeeeeceeiiiossnnenriiiccsssssssnnnnsssanes 17
DLL Management FUNCLIONS...........cccuuueeeeeeeeeccisssssnneneeeecccssssssssssesesscssssssssassenes 17
Function - LibDate......cccuuueeeeiieecciiinsnnneeceneccssssssnnseeeesccsssssssssseesescsseessssasssssssssens 17

VBToolbox Documentation 26 March 2011 Page 149 of 158

FUNCLION = LIDINAMI@.. e e ieecreernecreeceeeceecceecceccceecenccesccesccssecsecsasesasssssssesscsessssesseses 17

Function - LIbTime......iiiiiiiiiiiiniiisiiininnsssisssnanes 17
Function - LIbVersion........iiiniiiiiiiniiinisniisssssisssssssssssssssssssssssssssssssssssssnns 18
Function - LIbURNICOdE......ccciiiiiiiiiiiiiiiiiiiiiciiiciiceciieiececececccncccececececeessssescsssasescesssnes 18
String Handling FUNCLIONS..............uuueeeieunneeiiissnnniicnisnneecsssnsescsssssescssssssssssssssssnes 19
Function - AddString.......cccciiiiiiiiiiiiiiiiiiiiisisinisissse 19
Function - AddBinaryString........eeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeseeseesssesssssssssesiessssssscssssssnes 20
Function - AddHugeBinaryString.....cccccciiiiiiiiiiiiiiiciisinincssccscsccssscssssccsssasenscssansnnes 21
FUuNction = AllOCStriNG...ciiiiiiiiiiiiiiiiiiiiiienenensessneesssssssesssnes 22
FUunction - ArgFouNd........iiiiiiiiiiiiiiinininnninnninninissnsssnsssssssssssssssssssssssssssssssssssssassnnes 22
FUNCtion - BracketStr......eeeeeeeeeeenennnennnneeneneneeenenenenenenenenesesesesesssssesssssssessssssssenes 22
FUuNction - ArgVal.....iieieiiieeiicieeceeeseeescessssssssssessssssseses 23
FUunction - ComMmMaAaSLtY......iiiiiiiiiiiiiiiiiiiiisisisisisssissnnes 24
Sl TTo Vet u o] TN @ o 1o o1 3 o - VOO POt 24
FUNCtion - CSVSPlit..aeueeeeeeeeeeeeeeneneeeneenneneneeenemeeemesesesessssssssssssssssssssssssssssssssssssssses 25
Function - EIementCouNt........eeeiiiiiciiiiinnnnntiieiccissssnnsettiecssssssnssssennessssssssssssssssnns 26
FUuNCction - EXPressioN......iiiiiiiisiissiissssisisssanss 27
FUuNction = FillString...iiiiiiiiiiiiiiinniiiiinninninnnnnsessnssssccssssessssssssssssssssssssssssssssssssssns 30
Function - FINdClosingBracket........ccccceeeiiiiiiiiiiniiinininieeeeceniienineeeecseececsesnecscensneenes 30
FUNCLION Filt@r...uceceeeeeeniiinniniiiinnnininininininininieiieeinieieisisieisisisssmsssssssssssssssssssesssssssenes 31
SUD = GELAGS...cciiiiiiiiiiiiiiisisisisisisisisisisssesssssssssses 32
Function - GEtArrayCoUNt...........eeeeeeeeeeeeeneneneneneneeenenesesesnsssnsssssssssssssssssssssssssasss 32
Function - GetArrayDimensiONS.........eeeeeeeeeeeeeeeeeeneneeeeeeesesesesessssssssssssssssssssssssssssses 33
L TTo Vet ol [0 Yo TR €71 S 121 =5 QRS 33
Function - GetFileName......cccciiiiiiiiiiiiiiiiiiiiiniininnnninnnniinnnnsninsssssssssssssssssssssssssssanssnes 33
FUuNnction - INCHFREV......uuciiiiiiiiinnnnnitiiicciininnnntttiiccsisssnnsseteeicsssssnnssssensesssssssnsssnnns 34
1T Vet o] T 111 @] 1 1 o PNt 34
FUNCction - INSErtSEriNg........ueueeeeeeeeneeneneneneneneneneneeeneeeneeeeeneeesesesesesssssssssssssssssssssssasss 34
LT T Tat oY T 13] o PPN 34
FUuNction - INStrREV.....cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiieiiieiteeieeeeeeeeescesesssssesssssssenes 34
Function - ISAIICRAF..........eeeeeeeeeeeeeeeeenneeneneneneeeneeeneeeeneeeesesseeeessssssssssssssssssssssssssssssses 35
Function - ISValidVariant..........cssees 35
11T Yt 1o 3 TR o Y1 T 36
SUD = LOWEF .ciiiiieiiiiieiiiieninieeeieeneneeeneneseneeeneeeseneneeesesesesesesesesesesesesesssesssssssssesesesssssssses 37
FUNCLION = LOWEFSLY....uuiiiiiiiiiiiiiiiiiiiiiiiisisisssissnnenes 37
SUD - MatChBrackets......ueueeeueeeeneennnennnniennnnennnnnssassssssssssssssssssssssssssssssssssssesssssssseses 38
SUD = MIdCQharStr......uuuuueeeeiiiiiiniiiicnnnniniiciisisssssnssstiesssssssssssssssessssssssssssssssssssssssssssssss 38

VBToolbox Documentation 26 March 2011 Page 150 of 158

SUD = MIASEIStY.uuuueeiiiiiiiiiinnnettiinieiisssnnettetiesssssssssnsetsesssssssssssssssssssssssssssansesssssssnss 39

Function - PrintRu...eeieeeiieiiiiiiiiiiiiininininnnnnnniennnnnssnssssssssssssssssssssssssssssssssesssssssssses 40
FUNCLION = QSOKt..cuueiiieieencrenecceeecceneccerncccasccsasscsssscsssscsassessssscsssssssscsssssssssssssssssssns 41
FUNCLION = QS OIS Er . uueiieeeceeeeccreecceneccraecccasccceseecssscsssscsssscsssssssssscsssscsssssssssssssssssense 41
Function = QSOrtVal.....ceecieeeceeeeccreeceencccescccssecessscssssessscecsssscsssscsssscsassesssssssssssense 42
FUNCtion - REPIACE......cuuuuuuuemeeiiiiiiiiiinnnnnettiiicisissnnnnnttteicssssssnnssssennecssssssssssssnsnessssnns 44
Function - ReplaceChar............uuueeieiiiiiiiiisnnnnnniiicisissssnnneeeeecssssssnsssseeeeessssssesssscns 44
Function - ReEVErseWords.....cccccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeceeeeeeececsecccessssscsssssssssssssssssssssses 45
FUNCtion - SHCELEft.....cciiiiiiiinniiiiiiiiiiiinnnnttiticiisiinnnnnttiiecsssssssnssseeeesssssnessssssnns 45
Sl TTo Vet oY T ' 1Y o -1 o N 46
FUNCLIioN = StrIPLStE...cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiieiieeieieteeeeeeseetseeseessssssseesssssssenes 47
LT T et oY T o o o] N 47
FUNCtion = StrPRStY.....ciiiiiiiiiiiiiiiiiiiiiiiiiiiiisisiisissnenes 47
FUNCtion = StFIPRu....eeeeiiiiiiiinnntticcccinnnttttecccssennssstttecsssssnssssseteesseesssseesssssens 47
FUNCLION = StrREV.....uuuueeeeeiiiiiiciinennnnttiicciniennntettieccssssnnssstttitesssssssssssssesssssensssssens 47
FUNCion = StrSPlit...ccccicciiinnneiiiiiiiiiiiisnnnneiiieccsiissssnnsntneeccsssssnssssennessssssssssssssssssssens 48
FUNCLION - SWaPStr.....ccciiinniiiiiiiiiiinnnttiiiccssiissnsssttiecssssssssssstsescssssssssssssssssssssss 49
FUuNction - TOKENISE.......uuuuiiiiiiiiiiiiiiiiisiissisiniississsissssssssssssssssssssssssssssssssssssssasenanes 50
SUD = UPPEF.ciiiiiiiiiiiiiiiiiiininieieiienieieieieieiieeieieieeiieecteteesesesesesesesesesssssssssssssssesssssssssssses 51
FUNCLIioN - UPPEIStr.....iiiiiiiiiiiiiiiiiiiiiiiisiissssissnnes 51
FUNCLion - WOFrdWIrap.....ueeeeeeeeeeeeeneeeeenenenenenenenesesesssssessssssssssssssssssssssssssssssssssssses 51
Function - WildcardMatch.........ccciciiiiiiiiiiiiiiiiiiniiiniinnininnsnssnsnsnsssssssssssssssssssssssssssssns 52
Function - WordCouURnt......iiiiiiiiiiiiistssssssssssses 53
FUunction - WordList.......eeeeeeeeeeeennnennnennnnnnnnneeeneeeneneeenememeseeessssmsssssssssssssssssssssses 53
Arithmetic and Number FUNCHIONS.............covcneueeercnsnneencsssnneencsssnneescssnseescssecsanes 54
FUNCLION = CEiliuuuuuneeeeiiiiiiiiiinnnnneiiiiciiiiiinnnnnetiicciisssssnssssttnecssssssssssssseescsssssssssssssssssans 54
Function - DecimalTOROMAN.....ccciiiiiiiiiiiiiiiiiiiinisnissinssssssssssssssssssssssssssssssssssssssnnenes 54
LT T Vet oY T o [o T PPN 54
FUNCction - FMOd.......iiiiiiiiiinniniiiiniinnnnnnnnnnnnnnnnnnnnnsisssssesmsssssssssssssssssessssssessssssssenes 54
FUNCLion - GCd.......uuuiiiiiiiiiiiiiiiiiiiiiiisiiiiisisssissessssssssenes 55
LT T Yot ' T3 TR 1 - N 55
FUNCLIioN = MiNuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieineeiiiieieneceeeceeeeeeeeeneseeeeesesesesesesesesecesesesesesesesssssses 55
LT T ot o ' T TR o 1 o U 55
Function - RomanToDecimal.......ccciiiiiiiiiiiiiiiiiininiiinnniinnnnsnnssssssssssssssssssssssssssssannnnes 56
Function - RomanDigitToDecimal.....ccccccceeiiiiieinieinieieieenieenieeeeeeeeeesnecccessnessesssnenes 56
Function - MTRaNdoOMISE........uuuuueeeeeeeueeneneneneneneeeneneneneneeeneeenenesesesesesessssssseesssssssenes 57
[SLTTo Vet o Yo T o I N 3 s T PO 57

VBToolbox Documentation 26 March 2011 Page 151 of 158

Function - MTRNADOUDIE.......ueuieeieeeeeecreecreecencceecceeccecccecccsscesccsssessccsssscassesssssens 57

Function - MTRaNdoOmMStY........iiiiiiiiiiiiiiiiiiiiiiiiisisisssisssssssssssssssssssssssssssssssssssssssnes 57
LT Vet o] T 1 -1 1 Ve [o o T PTRPOR 57
Function - RaNdOmIiSe....ciiiiiiiiiiiiiiiiiiiiiiiiiiiiniisisisnsnsisnsssnsssssscsssssssssssesccsssssenssessssenes 58
Function - RaNAOmMStY.....cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiieieeiiiieeeisiettessecssssssesssssssenes 58
Function - Integral......cccccceeeeiiiiiiiiieiieiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeececeeeceseseecceeecsesssssssnns 58
LT et o ' T3 T o T o o [1o TN 58
Function - ROUNd.....cccciiiiiiiiiiiiiiiiiiieieieneieieeeeeeeceeeeeeeeeeeeeeeeeeeeeeecececeeeeecececesssssssssssssnes 59
Date and Time FUNCLIONS........ccuuueeeeecsuneeecissnnenccssnnencssssssescssssssescssssaesssssssassesens 60
Function - UKTOISODAaALE.........ccccciiiiinmmnmiiiicciisiscnnneeineccssssssssssstnescssssssnsssssesnssssssss 60
Function - ISOTOUKDaALE........ccuuueeeeeemeenneneeneenneeeeemesssesssesssssssssssssssssssssssssssssssssssssss 60
Function - UKShortTolSODate............eeeeeeeeeeeeeeennnenneeneeeneeeeeeesessssssssssssssssesssssssenes 61
FUNCLion - ISLEap Y @ar....ccciiiiiiiiiiiiiiiiiiiiiciecniccniecccecccccesececscesececssscssesssssssssssssesssssssses 61
Function - NUMOKFd......cccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiciieieiiiiiiiecitesssssecssssssesssssssenee 61
FUunction - PHPDaAtE........ccccinvmmeiiiiiciiiiinnnnnnttieccssssssnssstneecssssssssssssessesssssssssssssssssns 62
Function - PHPDateNOW.........iiiiiiiiiiinnnnntttiiccisssssnnsssttiecsssssssssssesesssssssssssss 62
FUNCtion - DSTAJUSL....ccccoiiiiiininnnniiiiiciiiisnsnnsetieccsssssssssssteescsssssssssssssessessssssssssssens 63
Table - PHPDate and - PHPDateNow Token Characters...........ccccceeeeeereeennnnne. 64
Function - VBDateStr.........iiiiiiiiiiiiiiiiisiiinisisisisisssssssissssssssssssssssssssssssssssessssssssenes 66
Function - VBDateMSecCs........uuuuuueeeeeeeeneennennenennnnnnnnanseseeeeesessssssssssssssessssssseesssssssenes 66
Function - VBDateToCTime...ccccceeiiiiiiiiiinecininiiiieeieieiiiieeecenececieececeseeeseseeesesssessssenes 66
Function - DateTOHEX.....ccciiiiiiiiiiiiiiiiiiiiiisisisisscsssnnes 67
Function - HeXToODate........cccovvvmmeiiiiiciisisnnnneeiiiecssssssnnsssennecsssssssssssssessssssssssssssens 67
Legacy BASIC Conversion FUNCLIONS............eeeeeecueeiicicsnnenicsssnneeccsssnneencssssensssssns 68
Functions - Mki and Cvi (INtEGEr).......uuueeiiiiiiiiivnnneiiiiccissscsnnnnneeiecsssssenssssssenesssens 68
Functions - Mkl and Cvl (LONE)....cccccuummiiiiiiiiiiicnnnnnnenicccsssscnnsneennecsssssnssssssesssssens 68
Functions - Mkf and Cvf (FIoat).........cccciiiinmneriiiccisisisnnnneeniecssssssnnnseneeccssssssnsssseens 69
Functions - Mkd and Cvd (Double)...........eiiiieciiiissnnnniiieccsssssnnsneneneccssssssssenns 69
Data Encoding FUNCLIONS........cccuuueeeeecsuneeecissneencsssnnencsssseescsssssesscssssssessssssssasssses 70
Function - BaseCoNV.......cceeeeeeeeeeeeeeceeeeceeeceeeeeeeeeeeetecteistetsessssssssscssssssssssssssssssssssssssss 70
Function - BaseConvDouble..............uuueeueeeeeeennennneneenenenneneneneeeeesesesssssssssssssssssssssesss 70
VB Wrapper - Base$().ccccccceiiiiiiiiiiiiiiiiiiniinniininincssncsssssscssssssssssssssssssssssssnsssesssssscasss 71
Function - Bin8, Binl6, BinN32.......ccccceceteenccrancceeeccceecccereccescecsssscsssscsassessssscsssssccssnee 72
VB Wrapper - Bin$()..cccccceviiiiiiiiiniiiiiiinnniiisisisisisissennses 72
Function - BiNTODEC.....ccciiiiiiiiiiiiiiiiiiniiniininiininiinnsnsissansnnes 72
alTToTel o To T TN B T=Yoll '] - 11 1 O 73
Ll TTo Vet o1 T o 1 = 3V U 73

VBToolbox Documentation 26 March 2011 Page 152 of 158

FUNCLION = HIWOF ... e eeieeeeeetnecrnceecceecceccceccesccesccssccssccessssssscsssscssscssscssssnssasseses 73

FUNCLIiON - LOBYLE...cciiiiiiiiiiieiniiiniiieeeieinieeeieeeieinieeeeeeeteesesesesesesesesecesesssssssssessssssssssenes 73
FUNCLIioN - LOWOKd....ciiiiiiiiiiiiiiiiiiiiiiiiiiicinsinsncncsssscsncscsscsccsssscsccsecessssesssssssessssssssenes 73
Functions - Bit-Rotation - RotIByte, RotrByte, Rotlint, Rotrint, RotlLong,
ROLILONG....ccuuiiiiiiiiiiiiiiisisisisisisisisisssnessssssnsasss 74
Functions - Bit-Shifting - ShiByte, ShrByte, Shlint, Shrint, ShiLong, ShrLong. 75
Function - ROtateByYte......ccuuuuuetiiiiiciiiiicnnneeiiecicisicsnnnetnieccsssssnnssssennecssssssssssssnsascssns 76
FUuNnction - ROtatelNt........ueueeeieiiieiiiiiicnnnniiiiccsisssnsnnneteieccsssssnnsssensecsssssnsssssnnesssssssss 76
Function - ROtateLong.......ueueeeeeeeeeeenneeeeennneeieeeieneieieisieisisisisisisissssssssssssssssssssssssses 77
FUuNction - StrTOHEX......iiiiiiiiiiiiiiiiiiiiiiiiisiiisisisisisssisssssssssssssssssssssssssssssssssssssssenee 78
Function - StringToOHEX...ccciieeieecieeeeeeeeeeesseenee 78
FUNction - HEXTOStr.......iiiiiiiiiiiiiiiiiiiiiisisiiisisissssscsssssssssssssssssssssssssssssssssssssnnnnes 78
Function - HEXTOCRAF.......iiiiiiiiiiiiiiiiinininnninnnnnnntsnnsnsnssssssssssssssssssssssssssssssssssseses 79
Function - HEXTOINt.....cccciiiiiiiiiiiiniiieeeeeieeeeeieeeeeeeeeeeeeeeeeeeeeceeeeeececececsssssessssssssssssssnes 79
Function - HEXTOLONG.......uuuuueeeeeienenennniinennenenentntieteteieisisisisisisisisssssssssssssssssssssssssses 79
Function - HeXToDouble.........ciiiiiiiiiiiiiiiiiiiiiniiiiisisisisisssssisssssssssssssssssssssssssssssannes 80
Function - CharTOHEX....uuueeeeeeeeeeeenneeinnneieneeeieieieieieieiiisisisisisisisssssssssssssssssssssssssses 80
Function - INtTOHEX....cccciiieiiiiiiiieiiieeiessiesssssesssssssenes 8l
FUunction - LONGTOHEX..uuuuuuuuiiiiiiiiinininiiniinininnnnnnnnennsnssseses 8l
Sl TTo Vet 0TI =TT oV of LN 82
Function - BitUnNPacK.......cciiiiiiiiiiiiiiiiiiiiniiiiieieieinceieiniecieeiieeieeecececneseessescsescscsesesssnes 83
Function - DecodeString64.........eiiiiiiiiiiinnnnneiiieccissssnnsneennecssssssnssssseescsssssnssssses 84
Function - ENcodeStringb4................uueeiiiiiiiiiivsnnneeiieccsssscsnnseneeccsssssensssssssessssens 84
Function - ENCryptString.......iissississssssssssssssssssssssssssssssssssssssasssssssasssnes 85
File and Disk Handling FUNCHIONS............ccoeeuueeeeeissneencsssnneencsssnneencsssnseescssssssscsens 87
FUuNnction - DisKFree.......ccceeeeeeeiieieieeeeeieeeeeeeeeeeeeeeeeeeeecceeeececceeeceececscscsssssssssssssssssssssses 87
Functions - DiskFreeMeg and DiskFreeGig..............uuuueueuenenenneeneneneicrnnneccennnnnnes 87
FUNCtion - DIrEXISts......uueueeeeeeenenenenenenenennneneeenneeneneneeenenecenesesesesesesssssesssssssssssssssssssss 87
Function - DFIVEEXIStS...cccceeiieiiiiiiiiieieiieiiieniiieiiieieeiieiiiiieieecieieicieesesessssssssssssssssssssenee 87
Function - FIleCoUNt.......iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnsiisssnssesssssssssesssssssssssccsssssessssssssenes 88
L TTo Vet ol [0 Yo TR 1 1= o071 PR 88
Function - FileLength...........iiiiiiiiiiiiiiiiniiiniiiniiinisisisissssssssssssssssssssssssssssssssannnnes 88
Function - FileNameMatch.............uuuueeueeeennennenneenennnnnnnennnnieeeeeesesessesssssssssssssssseeees 88
Function - GetDisKSiIZe.....uuuuuueeeeeeeeeeeenneeennnnnnneneinieieieicieisisisisisisisisissssssssssecssssssses 89
Function - GetDiskSiZzeGb............iviiiiiiiisiiiiisisisiiiiisinisiiiiisisissscssssssssssssssssnnsnnenes 89
Function - GetDiskSizeMb............uuuuuueeeennnnnenneennnnnnnennnennnnnennnnensesssssssssssssssssssssssssees 89
Function - GetDiskTyPe...ccciiiiiiiiiiiiiiiiiiiniinincicnsnnnsnecccscsccsssececesecessssesssssssesssssssseses 90

VBToolbox Documentation 26 March 2011 Page 153 of 158

Function - GetVolumeFileSystem..............uuuuuueeeeeeeneennenneennnennennneneeneeieneeneenceeenennes 91

Function - GetVolumeLabel............iiiiiiiiiiiiiiiiiisisiiisiiisiiisisssisssssssssssssssssssscensnnes 91
Function - GetVolumeNameLength..............iiiiiiiiiiiiisiiiiisisisisisisisisisiscscscncnns 91
Function - GetVolumeSerial...........cooieeiieeeieinnnnnnnnnnnnnnnnnneneennninnninnnseiciesseccesssees 91
Function - ISCDROMDISK......ccccceiiiiiiiiiiiiiiiiisisisssssssssssssssssssssssssssssssssssssscssssnencasssnes 92
Function - ISHardDisK.........cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeceeeeeeeteeeesesesssesssssssssssescssssssnes 92
Function - ISNetworkDiskK..............uuuuuueuennnnennnnnnnnnnnnnnsssssssssssssssssssssssssssnsssssssnsens 92
Function - ISRAMDISK..........uuuuueueunnnniinininiiisssssssnsssisssssssssssssssssssssssessasenscsssssnnes 92
Function - ISReady........uuuuueeeeeeeneennnnnnnnnnnnnnnnnneeneeneeeeenneeeeeeeemeseeesssessssssssssssssssssssssses 92
Function - ISRemovableDisk..........uuuuuuueenenennnnnnnnnnnnnennnennnneneneeeennssesssssssssssssssssssseenes 93
Function - ISSafeMode......cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinniiniccnicccncncesecccecesesesccscccscscssecscssene 93
Function - ISValidDiskK......cccccciiiiiiiiiiiiiiiiiiisiiisicisisssssssssssssssssssssssssssssssssssscsssnnescessnnes 93
FUunction - LiStFiles......uueeeeiieeiiiieieiiienninninnininnnniieneniieiniiiennniiemimiiiisisisssssssssssessssssenes 94
FUNCLIiON = MKDIrS..ciiiiiiiiiiiiiiiiiiinieeneneeseenseeesensesessesesesssesesssesesesssssesesesssessssssssssssssses 95
Function - MKTempName.......ciiiiiciiiiiisnnnntiiiccississnssstiiecsssssssssssessssssssssssses 96
Function - ReadFileTOString.....cccceeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeeeeeeneeeeeeesesesesesessseseecesssssnes 97
FUunction = UnlinK......issssssees 98
Function - WIPEeFile......iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiininicininccisinccsecccnsesccsscscsscssscscscene 98
Internet and Network Related FUNCLIONS...........cccuueeeeeccnnneeecssnneenccsnnneessssnnesanee 99
FUNction - GEtCGIAFES.......uuuiiiiiiiiiiisiiisississsssisisssasssssss 99
Sl TTo Vet 1o T T | o I oY o] 1 ¥ - SRR 99
Function - IPMatch............iiiiiiiiiiiiiiiiiiiiniiisinisssinsssnsssssssssssssssssssssssssssssssscnssnnes 100
Function - LONGTOIP.....iiiiiiiiiiiiiiniiiinninninnnnninsnsnsssnnes 100
Function - MapNetworkDFrive........ccceieeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeecceececceeseesseessanes 101
Function - MapNextFreeNetworkDFrive..........cccciiiiiiiiiiiisisisisisisisisissssssscscssscscnens 102
Function - UnmapNetworkDFive............uueeeeeeeeeeneeneenneneennennnenenenennsesessssssssssssssnes 103
Function - MatchCIDR.........cccciiieisttisssssssssssescesssnes 103
Function - URLENCOdE.....ccccciiiiiiiiiiiiiininieeeeneececeeeceeececeeseneeeseseseessesssessessesssesesesssnes 104
Function - URLDeECOdE...........uuuueuueenenniennnnsssesssssssanes 104
CONSOIE FUNCLIONS.....c..cuuueeeieinnnerininniiiisinsenisssnsensssssssenssssssssssssssssasssssssssnssssssss 105
Sub - ClearConsole Attributes...........iiisiisssssssisssssssssssssssssssssssssssnnesnsenennnes 105
0] IR @ Lo Y=Y @01 T-Y o 1=V 105
] T T e PPN 105
Function - ConsoleOPeN.....cccieiiiiieiiiieiieeiieeeieeeeeeeeseeeeesesesesesesesesesssesesssssssesesesesssnes 105
Function - ConsoleTitle...iiiiiiiiiiiiieiiiieeiieineienecsesnenscsesessssssssssssesessssssscssssssssssssnnes 105
Function - EXitProgramu......eeiecccciiicnnnnetiiiccisisscsnnsetieccssssssnssssensecssssssssssssssseees 106
Function - FIushConsole............iiiiiiiiiiiiiisiiiiiiisisisiiiiisisssssssissssssssscnssneccessneenes 106

VBToolbox Documentation 26 March 2011 Page 154 of 158

Function - GetConsoleHandle..........ueeeieeiencieeceeeceeecenccenceecceeececeecesecasecncsecsses 106

Function - GetConsoleTitle...eueueeeeeeeieneneienenenenennnnnnnnsnsneesssssesssssssssssssssssssees 106
SUD = GOOXY .uuuuueeneiiiiiiiisissssnnssnniecssssssssssssriesssssssssssssssssessssssssssssssssssssssssssssssssssns 106
FUuNnction - INKeY.......uuueieiiiiiiiniiiininiininssissnsssnssssssssssssssssssssssssssssssssnssseesssssssenes 107
Function - INNativeConsole.........ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiisicccscisssssccncnsnnecccnsseescessnnes 107
Function - ISCUrsorVisible.......ccccceeeeeeeeeeeeeieieeeeeeeeeeeeeeeeeeeeeeceeeeeeeeeeeeecceceeeseeceessanes 107
Function - OpenCoNSOlE.....cciiiiieiieiiiieneeenieeeeneeeneeeeeeseesesesenesesesesesesesesssssesesesesesssnes 108
SUD - PAUSE...cuuuueeeeeeeeneninennennineeieneesesesisisesssssssssesss 108
[l TTo Vet T T 1Y T | N U 109
Sub - SetConSOIEALLrIbDULES..........ccueuiieiiieiiiiiiiiniiiiiiinisssssssssssssissensnnesesssneenes 109
Sub - SetCUrsorVisible.....ueeeeeeeeeeeeeeennennnnennennnenneeneneeeeeensesessesssssssssssssssssssesnes 109
FUunction - WhereX.....iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiicieiiiiiiieieiceeinieeseeesesesesesssescesssses 109
FUNCLioN - WHheEreYiiiiiiiiiiiiiiiiiiiiieninciieeiinineeeieeeeieeeiceceesseseceeesessssesssssssessssssssenes 109
FUNCLion - WFItELnu....uauaeeeeeeeenennennneeneneneieeeeeeeiesses 110
FUNCLION = WIFILES...cuiiiiiiiiiiiiiiiinnnisinisissnnes 110
Console Colour CoNStANtS.........uueeeueueeenniiissnnes 11
Native Console App Conversion (EXE Conversion).........ccccceeeeiiicccnneeennneeennces 112
Windows API-Related FUNCLIONS............uueeeecrueeeecsssneenccssnneecsssnnsenssssssessssssssenes 113
Function - AAdEVENtSOUrCe.......ccciiiiiiiiiiiiiiiiiiiiisisisssssssssssssssssssssssssssssscnssseescessanes 113
Function - AddTrailingSlash..........cccciiiiiiiiiiiiiiiiiiiiiiiiiiisiiiiisisisisssssssssssssssssssscensnnes 113
Function - CanRedo.......ccciiiiiiiiiiiiiiiiiiiiiiiiiiieiiiecicececncecececececececececesssssessessseescesssnes 114
Function - CanUndo.....ccccieiiiiiiiiieicieiiinieceeeeeeececececececeeeeeeneeecescsesessscsesssssssssesesesssnes 114
Function - CreateGUID............cccouummmeiiiicciiissnnnnneiieccssssssnnssssenncssssssssssssssssssssans 114
FUunction - FIleType...sssssssssssssssssssssssssssssssssessasssscssansnnes 115
Function - GetAppFileName.......ccccccerriiiiinieiienieeeneeeeeeeeeeeeeieeeeeeeeeeeeeeeeceeceeeeceecsanes 115
Function - GetCUrrentDir......ccciiiiiiiiiiiiiiiiiiiiiiiininininniisiscsnnsssssssssssssssscssaneescssasnenes 115
Function - GetDLLFIleName........ccccccceviiiiiiiiiniiiieiniiinieeiieiniiieieieieeseecccesssecscessseenes 115
FUNCction - GEtEFror............ucuueaeeeeeeneniinnnennnnnneienenneneneenneeneseeesenssesesesssssssescssssnes 116
Function - GetNormalisedPath..................uuuueeeeeueeennneeeennnnenennneneneneneneneneneseneneeenes 116
Function - GetOpenFile...........uuueeeenennnnneneneneneneneneneneeenenneeneeeeeeeeenesesesesesscssssnes 116
Function - GetProfileDir......ccciiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeneneneneneeeeeeeeeseneeeseseseseseeessnnes 117
Function - GetSaveFile......ccccceiiiiiiiiiiiiiiiiiiiiiineniieniieieieeeeeeeeeeeeeeeeeeessesisecssssseessnnes 119
Function - GetSystemDIir.....cccccceeieieiiieieeeiieieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeessesesssssescssessenes 119
FUunction - GetUSErDIir......cccciiiiiiiiiiiisiiiiiiisssissnnes 119
Function - GetWallpaper..........eeeieeennnniennnnsssssssssssssssssssssssssnsssssssssssssssssses 119
Function - GetWallpaperStyle...........uuueeeueeeueennneenneneennenenenenenenenesensseseessesssnenes 120
Function - GetWindoWSDIir...........uuueeeueeeneneneneneeeeeeeneneneneneneeenenenesesesssesessssssssssssnes 120

VBToolbox Documentation 26 March 2011 Page 155 of 158

Function - ISClipboardEmMPty.....ccccceeeeeeeeeeeneeeeeeeeeceeeeeceeeeeeceeccceeeeeccsesecccessssssesssnes 120

Function - ISEVENtSOUNCE.....cciiiiiiiiiiiiiiiiiiiiiiiiiiiiciiisiccesccscssecesccccessssessssssseessssssnenes 120
Function - ISMoOUSEPresent..........uueeeeeeeeeeeeeenenennnnnnneeeennneenenseesssssesssssssssssssseescesssnes 121
Function - ISNetworked............iiiiiiiiiiiiiiiiniiiiiiiiisisisisissiisssissssssssssssssssscnssnnnnes 121
Function - ISSafeMode.......cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiinecciccccicecececenssnescsssseessessseenes 121
Function — ISSIOWMaChINeiiiiiiiiiiiiiiiiiiiiiiiiiniinninininniinnncncccsssscscsccsescaneescssennenes 121
FUunction - LOGEVENt.........iiiiiiiiiiiiiiiisisisisisisissannnnes 122
Function - MonitorCouNt..........eeeeiiiicciiiiinnnnetiticcisssssnssseteeccssssssssssssessssssssnssssses 124
Function - PrintDebug..........uiiiiiiiiiiiiinnnniiiiiccisisssnnneeiiccssssssssssesssssesssssssseeees 124
SUD - PriNtSCrEEN....ciiiiiiiiiiiiiiiiiiiiiiciiiiiiisissssssssssssssssssssssssssssssssessssssssssssssssssssssssnes 124
Function - RemoVEEVENtSOUKCe..........uiiiiiiiiiiiiiiiiiisiiisisssisisssssssssssescnssneecessnnes 124
Function - SetCurrentDir...........uueeeeeeeeeeeeeeennnnnnneneeeeeennnnenesssessssssssssssssssssssesscesssses 125
Function - SetWallpaper........ueeeueeennnneennennnennnennnnnsnnsssssssssssssssssssseciscssssescssssnes 125
Function - ShellRUN.......cccciiieiiiiiieieieiiiieeeeeeeeeeieeeeeeeeeeeetteteeeeteeeeteetcetetscecsesssssssssssses 125
Function - ShoWFileProperties....cccccceeeeieieieieneininneenenesiecensenenesesccceesennceesseesseesannes 126
Function - WindowsSubVersion............ueeeeeeeeeeeeeeneennneeeneneeeeeasesisseeicesseeceecsnnes 127
Function - WindoWSVersioN.......ccciiiiiiiiiiiiinisisissnnes 127
Function - WindowsVersionMajor......iiiiiiiiiiiiiiiiieiecccececncececccccecccecccccccessseenes 127
Function - WindowsVersionMinor.............uueueeeeeeeeenneeeneeennenneneeneesnsssssssssssssssssssees 127
FUuNnction - WINSIEep......cuuueeeeeeieieiiinnnniienniniennininieinieiiiiisiiicieiiisisisisisseisctsssescesssnes 127
Windows Registry-Related FUNCLIONS..............ueeeeecuuneeeiciunericssnnenccsssnneescssssssnes 128
Windows Registry CoNStants.....cccccceeeeeeeeeeieiieiiieeeeeeeieeieeeeeieeeeceeeseeeeeceseessesssescases 128
Function - ReadDWORDFromREGIStrY...cccceieeieiriiieieeeceesessessssesesccssssceessnnncnsannes 128
Function - ReadStringFromRegistry.....ccciiiiieiiiiiiiiiieiiciiiesinenccccerennencneaneencesennenes 128
Function - WriteDWORDTOREGIStry....cccccceeeereerereeeeeneeeneeeeeeeeeeeeeeeeseeceeeseesceessanes 129
Function - WriteStringTORegIStry...cccccceeirerereriieriiiiineieneeeeeeeeeeeeeeeeneniseeesenceecannes 129
Windows Process FUNCHLIONS...........uueeeeevuneeeicssnnencssssnnencsssneescssssseescsssssesscsssssssse 130
Function - GetPID........ccccceiiiiiiiiiiiiiiiiiniiiieiieeeeieiieeeeeeeeeceeeeeeeeceeeeeeeeececeeecssssssssassenes 130
Function - GetProcessMemoryUsed...............uuuuueeeeeenennnnnneennnenenennnecscnnsnnccensnnes 130
Graphics FUNCLIONS.......cceeeueeeeeeeiisnneeeiisnneeecssnnneessssnneecsssssseessssssssessssssssssssssssssss 131
Function - BGRSPIit.....ueueeeueueinnnininininneinnnininnninnnnnnnnnsnssssssssmsssssssssssseescsssssscssssses 131
Function - BGRTORGB.............uueuuennenennneneneneneeeneneneeenescmesesesesssssssssssessssssssanes 131
Function - GetColourSelection......iiiiiiiiiiiiiiiiciiiiiieiecececececececececececscecececccesssnenes 132
Function - RGBVal..........iiiiiiiienisissses 133
Function - StrinGTOBMP.............uuuuueeeeeeeeeeeenennneneneeeneeeeeeeeeeememesssessssssssssssssssssssssses 133
Function - BMPTOStHING......uuiiiiiiiiiiiinnnttiiicciiiisnnnnsttieccssssssensssseesecsssssnssssssseees 134
Function - BMPDataSize.......cccuvvvemeitiiccisiisnnnnneiieccssssssnnsseenecsssssssseseesssssssssssssens 134

VBToolbox Documentation 26 March 2011 Page 156 of 158

FUNCEION = BMPINFO..aucceutreeecreenccrencereecreeccerescesescesesecssssossssssssssssassssssssssssssssssssssss 134

Function - JPEGCRECK....cccccitrmmmruiiisiniiirnnnnenscssscnesnnasssessssssecsssssssssssssssssssesssasssssse 134
Function - JPEGHeEAdErccccuuurrecririiiirrnnnreecsssicernnasereessssecsssssssssssesssssssssssssesssane 135
MAPI and EMail FUNCUORNS..........uuueeeeecnueieiiisnneiinssnnenicsssnsencsssnsessssssssssssssssenes 136
Function - MAPISENd........eeiieiieciiiiinnneetiecccissssssnneeeesscssssssssasseesessssssssssssssees 136
ComPression FUNCLIONS...........ueeeeeeueeiieiissnnnieisssnniicssssssnnesssssssecssssssssesssssssssssssass 137
Function - RLEBYteCOUNt......cccuueeeemimiimmmmmnnnnnmeineemesesmsssssmsssssssssssssssesssssssesssssssenes 137
FUunction - RLECOMPESS...aueeeeeeeeeeeeeneeenmesssmessses 137
Function - RLECOMPFreSSEd.....cccciiiiiiiiiiiiiinssnes 137
Function - RLECOMPFresSible......ciiiiiiiiiiiiiiiiiiiiieiiiininnsscscsnssesccccerennenicseeneecssennenes 137
Function - RLEUNCOMPIESS....ccciiiiiiiiisissnes 139
Function - RLECompressByteCount................uueeeeeeueeenenennnnnnennnneneeeneeeneneescessnnes 139
Function - RLEUncompressByteCount.....ccccceeeeeeieeeieieieeeeieeceeecnceeeeececeeceneceeessanes 139
Visual BASIC Wrapper Code........uuueeecnuneerccssnneecissnnenccssseescssssssescsssssesscsssssassns 140
FUNCtion - DLLVErsioN.....cccciiiinuteeiieeccissssssneeetescssssssssnseesessssssssssssasesssessssssssasses 140
Function - IsDLLINstalled......cccccceovuuuuneiiieecciisnsnnneeeeecccsissssnnneeeeeseeeesssessssccssseeens 141
FUNCtion - BaseS$......cccuuueeieieeciiinnnnnnnteienccissssssnneeeesecsssssssssseesescsssssssssssssssssssesees 142
FUNCion - Bin$...ccccciiiiiieeciiiinnnnneeeeicccsinsnssnnneeeescssssssssnsseeesscsssssesessssssasssssssssees 142
Function - VariantTOAFraY.........iiiisisiissasssssssanes 143
FUNCLION = VBSEE cuuuuuiiiinniiieninnennnnnnnienssnnesessssnessassses 143
Function - StripTerminator ... eeiiiiiciiiiinssnnnetieccsisssssnnsseteiecseseesssseessssssssseees 144
Appendix | - VBToolbox Visual BASIC Declares List...............ueeereruueeercrsnneenens 145
Appendx Il - Erratum and Known or Reported Bugs............ccccuuueerecsnneeeeccseens 146
Appendx Il - Useful References and LinKs..............ueeeeeeuueeeeecssnneeeecssnneeeccscsenens 147
Appendx IV - 3rd-Party Copyright INformation..................cccuueeeeccsunnerecscnennans 148
Mersenne Twister Random Number Generatorccccceeeeeeeeeenneeceeeneecerennnnes 148

VBToolbox Documentation 26 March 2011 Page 157 of 158

Thiz page is intenticnally left blank

This docurment was produced using OpenOffice 3 - htrpwwew openciffice org

Flease support OpenDffice and consider using it in preference to Microsoft Office

